Skip to main content
Log in

ON THE PARTITION APPROACH TO SCHUR-WEYL DUALITY AND FREE QUANTUM GROUPS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We give a general definition of classical and quantum groups whose representation theory is “determined by partitions” and study their structure. This encompasses many examples of classical groups for which Schur-Weyl duality is described with diagram algebras as well as generalizations of P. Deligne's interpolated categories of representations. Our setting is inspired by many previous works on easy quantum groups and appears to be well suited to the study of free fusion semirings. We classify free fusion semirings and prove that they can always be realized through our construction, thus solving several open questions. This suggests a general decomposition result for free quantum groups which in turn gives information on the compact groups whose Schur-Weyl duality is implemented by partitions. The paper also contains an appendix by A. Chirvasitu proving simplicity results for the reduced C*-algebras of some free quantum groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Banica, Théorie des représentations du groupe quantique compact libre O(n), C. R. Acad. Math. Sci. Paris Sér. I Math. 382 (1996), no. 3, 241–244.

    MATH  Google Scholar 

  2. T. Banica, Le groupe quantique compact libre U(n), Comm. Math. Phys. 190 (1997), no. 1, 143–172.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Banica, Fusion rules for compact quantum groups, Exposition. Math. 17 (1999), 313–337.

    MathSciNet  MATH  Google Scholar 

  4. T. Banica, Representations of compact quantum groups and subfactors, J. Reine Angew. Math. 509 (1999), 167–198.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), no. 4, 763–780.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Banica, A note on free quantum groups, Ann. Math. Blaise Pascal 15 (2008), 135–146.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Banica, S. T. Belinschi, M. Capitaine, B. Collins, Free Bessel laws, Canad. J. Math. 63 (2011), no. 1, 3–37.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Banica, A. Skalski, Two-parameter families of quantum symmetry groups, J. Funct. Anal. 260 (2011), no. 11, 3252–3282.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Banica, A. Skalski, Quantum isometry groups of duals of free products of cyclic groups, Int. Math. Res. Not. 9 (2012), no. 9, 2094–2122.

    MATH  Google Scholar 

  10. T. Banica, R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), no. 4, 1461–1501.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Banica, R. Vergnioux, Fusion rules for quantum reection groups, J. Noncommut. Geom. 3 (2009), no. 3, 327–359.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Bichon, Free wreath product by the quantum permutation group, Algebr. Represent. Theory 7 (2004), no. 4, 343–362.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Bichon, A. De Rijdt, S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703–728.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Bloss, G-colored partition algebras as centralizer algebras of wreath products, J. Algebra 265 (2003), no. 2, 690–710.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Brannan, Reduced operator algebras of trace-preserving quantum automorphism groups, Doc. Math. 18 (2013), 1349–1402.

    MathSciNet  MATH  Google Scholar 

  16. R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937), no. 4, 857–872.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Daws, P. Fima, A. Skalski, S. White, The Haagerup property for locally compact quantum groups, J. Reine Angew. Math., to appear, arXiv:1303.3261 (2013).

  18. K. De Commer, A. Freslon, M. Yamashita, CCAP for universal discrete quantum groups, Comm. Math. Phys. 331 (2014), no. 2, 677–701.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Deligne, La catégorie des représentations du groupe symétrique S t , quand t n’est pas un entier naturel, in: Algebraic Groups and Homogeneous Spaces, Tata Inst. Fund. Res. Stud. Math., Vol. 19, Narosa, New Delhi, 2007, pp. 209–273.

  20. A. Freslon, Examples of weakly amenable discrete quantum groups, J. Funct. Anal. 265 (2013), no. 9, 2164–2187.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Freslon, Fusion (semi)rings arising from quantum groups, J. Algebra 417 (2014), 161–197.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Freslon, M. Weber, On the representation theory of partition (easy) quantum groups, J. Reine Angew. Math., to appear, arXiv:1308.6390 (2013).

  23. P. Glockner, W. Von Waldenfels, The relations of the noncommutative coefficient algebra of the unitary group, in Quantum Probability and Applications IV, Lecture Notes in Mathematics, Vol. 1396, Springer, Berlin, 1989, pp. 182–220.

  24. V. F. R. Jones, The Potts model and the symmetric group, in: Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kyuzeso, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 259–267.

  25. A. J. Kennedy, M. Parvathi, G-vertex colored partition algebras as centralizer algebras of direct products, Comm. Algebra 32 (2004), no. 11, 4337–4361.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Knop, A construction of semisimple tensor categories, C. R. Acad. Sci. Paris Sér. I Math. 343 (2006), no. 1, 15–18.

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Knop, Tensor envelopes of regular categories, Adv. Math. 214 (2007), no. 2, 571–617.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Kosuda, Characterization for the modular party algebra, J. Knot Theory Ramifications 17 (2008), no. 8, 939–960.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Lehrer, R. B. Zhang, The Brauer category and invariant theory, J. Europ. Math. Soc. 17 (2015), no. 9, 2311–2351.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Lemeux, Fusion rules for some free wreath product quantum groups and applications, J. Funct. Anal. 267 (2014), no. 7, 2507–2550.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Lemeux, Haagerup property for quantum reection groups, Proc. Amer. Math. Soc. 143 (2015), no. 5, 2017–2031.

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Lemeux, P. Tarrago, Free wreath product quantum groups: the monoidal category, approximation properties and free probability, preprint, arXiv:1411.4124 (2014).

  33. P. Martin, Temperley-Lieb algebras for non-planar statistical mechanics—the partition algebra construction, J. Knot Theory Ramifications 3 (1994), no. 1, 51–82.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Mori, On representation categories of wreath products in non-integral rank, Adv. Math. 231 (2012), no. 1, 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Mrozinski, Quantum automorphism groups and SO(3)-deformations, J. Pure Appl. Algebra 219 (2015), no. 1, 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Neshveyev, L. Tuset, Compact Quantum Groups and their Representation Categories, Cours Spécialisés, SMF, 2013.

  37. A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series, Vol. 335, Cambridge University Press, Cambridge, 2006.

  38. L. Pittau, The free wreath product of a discrete group by a quantum automorphism group, Proc. Amer. Math. Soc. 144 (2016), no. 5, 1985–2001.

    Article  MathSciNet  MATH  Google Scholar 

  39. S. Raum, Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexifications, Proc. Amer. Math. Soc. 140 (2012), 3207–3218.

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Raum, M. Weber, The full classification of orthogonal easy quantum groups, Comm. Math. Phys. 341 (2016), no. 3, 751–779.

    Article  MathSciNet  MATH  Google Scholar 

  41. K. Tanabe, On the centralizer algebra of the unitary reection group G(m; p;n), Nagoya Math. J. 148 (1997), 113–126.

    Article  MathSciNet  MATH  Google Scholar 

  42. P. Tarrago, M. Weber, The classification of tensor categories of two-colored non-crossing partitions, preprint, arXiv:1509.00988 (2015).

  43. S. Vaes, R. Vergnioux, The boundary of universal discrete quantum groups, exactness and factoriality, Duke Math. J. 140 (2007), no. 1, 35–84.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Van Daele, S. Wang, Universal quantum groups, Internat. J. Math. 7 (1996), 255–264.

    Article  MathSciNet  MATH  Google Scholar 

  45. S.Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), no. 3, 671–692.

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), no. 1, 195–211.

    Article  MathSciNet  MATH  Google Scholar 

  47. S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613–665.

    Article  MathSciNet  MATH  Google Scholar 

  48. S. L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), no. 1, 35–76.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AMAURY FRESLON.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FRESLON, A. ON THE PARTITION APPROACH TO SCHUR-WEYL DUALITY AND FREE QUANTUM GROUPS. Transformation Groups 22, 707–751 (2017). https://doi.org/10.1007/s00031-016-9410-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-016-9410-9

Navigation