Skip to main content
Log in

Mirabolic Langlands duality and the quantum Calogero–Moser system

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We give a generic spectral decomposition of the derived category of twisted \(\mathcal{D} \)-modules on a moduli stack of mirabolic vector bundles on a curve X in characteristic p: that is, we construct an equivalence with the derived category of quasicoherent sheaves on a moduli stack of mirabolic local systems on X. This equivalence may be understood as a tamely ramified form of the geometric Langlands equivalence. When X has genus 1, this equivalence generically solves (in the sense of noncommutative geometry) the quantum Calogero–Moser system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Arinkin, Appendix to [DP1].

  2. A. Beilinson, J. Bernstein, A proof of Jantzen conjectures, in: I. M. Gel’fand Seminar, Adv. Soviet Math., Vol. 16, Part 1, Amer. Math. Soc., Providence, RI, 1993, pp. 1–50.

    Google Scholar 

  3. A. Beilinson, V. Drinfeld, Quantization of Hitchin Hamiltonians and Hecke eigensheaves, preprint, available at http://www.math.uchicago.edu/~mitya.

  4. D. Ben-Zvi, J. Francis, D. Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, arXiv:0805.0157.

  5. D. Ben-Zvi, T. Nevins, Cusps and \(\mathcal{D} \) -modules, J. Amer. Math. Soc. 17 (2004), 155–179.

    Article  MATH  MathSciNet  Google Scholar 

  6. D. Ben-Zvi, T. Nevins, Flows of Calogero–Moser systems, Int. Math. Res. Not. 2007 (2007), article ID rnm105, 38 pp.

  7. D. Ben-Zvi, T. Nevins, Perverse bundles and Calogero–Moser spaces, Compositio Math. 144 (2008), no. 6, 1403–1428.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Ben-Zvi, T. Nevins, \(\mathcal{D} \) -bundles and integrable hierarchies, preprint, arXiv:math/0603720.

  9. R. Bezrukavnikov, A. Braverman, Geometric Langlands correspondence for \(\mathcal{D} \) -modules in prime characteristic: The GL(n) case, Pure Appl. Math. Q. 3 (2007), no. 1, 153–179.

    MATH  MathSciNet  Google Scholar 

  10. R. Bezrukavnikov, M. Finkelberg, V. Ginzburg, Cherednik algebras and Hilbert schemes in characteristic p. With an appendix by P. Etingof, Represent. Theory 10 (2006), 254–298.

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Bezrukavnikov, I. Mirkovic, D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, Ann. of Math. (2) 167 (2008), no. 3, 945–991.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Bezrukavnikov, I. Mirkovic, D. Rumynin, Singular localization and intertwining functors for reductive Lie algebras in prime characteristic, Nagoya Math. J. 184 (2006), 1–55.

    MATH  MathSciNet  Google Scholar 

  13. P. Berthelot, A. Ogus, Notes on crystalline cohomology, Princeton University Press, Princeton, NJ, 1978.

    MATH  Google Scholar 

  14. A. Borel, P.-P. Grivel, B. Kaup, A. Haeiger, B. Malgrange, F. Ehlers, Algebraic \(\mathcal{D} \) -Modules, Perspectives in Mathematics, Vol. 2, Academic Press, Boston, MA. 1987.

    Google Scholar 

  15. P. Deligne, J. Milne, Tannakian categories, in: Hodge Cycles, Motives, and Shimura Varieties, Springer Lecture Notes in Mathematics, Vol. 900, Springer-Verlag, Heidelberg, 1982, pp. 101–228. Russian transl.: П. Делинь, Дж. С. Милн, Категории Таннаки, в сб. Ходжевы циклы и мотивы, Математика, Новое в зарубежн. науке, т. 37, Мир, M., 1985, стр. 94–201.

    Google Scholar 

  16. R. Donagi, Seiberg–Witten integrable systems, in: Algebraic Geometry (Santa Cruz 1995), Proc. Sympos. Pure Math., Vol. 62, Part 2, Amer. Math. Soc., Providence, RI, 1997, pp. 3–43. arXiv:math.AG/9705010.

    Google Scholar 

  17. R. Donagi, T. Pantev, Torus fibrations, gerbes, and duality, Mem. Amer. Math. Soc. 193 (2008), no. 901.

  18. R. Donagi, T. Pantev, Langlands duality and Hitchin systems, arXiv:math.AG/0604617.

  19. P. Etingof, Cherednik and Hecke algebras of varieties with a finite group action, arXiv:math/0406499.

  20. P. Etingof, Calogero–Moser Systems and Representation Theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich, 2007.

    Book  MATH  Google Scholar 

  21. P. Etingof, V. Ginzburg, Symplectic reection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243–348.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. Finkelberg, V. Ginzburg, Cherednik algebras for algebraic curves, arXiv:0704.3494.

  23. M. Finkelberg, V. Ginzburg, On mirabolic D-modules, arXiv:0803.0578.

  24. M. Finkelberg, V. Ginzburg, R. Travkin, Mirabolic affine Grassmannian and character sheaves, arXiv:0802.1652, to appear in Selecta Math.

  25. V. Fock, A. Gorsky, N. Nekrasov, V. Rubtsov, Duality in integrable systems and gauge theories, J. High Energy Phys. 2000, no. 7, Paper 28, 40 pp.

  26. E. Frenkel, Recent advances in the Langlands program, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 2, 151–184.

    Article  MATH  MathSciNet  Google Scholar 

  27. E. Frenkel, Ramifications of the geometric Langlands program, in: Representation Theory and Complex Analysis, Lecture Notes in Mathematics, Vol. 1931, Springer-Verlag, Berlin, 2008, pp. 51–135.

    Chapter  Google Scholar 

  28. W. L. Gan, V. Ginzburg, Almost-commuting variety, \(\mathcal{D} \) -modules, and Cherednik algebras, With an appendix by V. Ginzburg, Int. Math. Res. Pap. (2006), 26439, 1–54.

  29. V. Ginzburg, N. Guay, E. Opdam, R. Rouquier, On the category O for rational Cherednik algebras, Invent. Math. 154 (2003), no. 3, 617–651.

    Article  MATH  MathSciNet  Google Scholar 

  30. I. Gordon, J. T. Stafford, Rational Cherednik algebras and Hilbert schemes, Adv. Math. 198 (2005), no. 1, 222–274.

    Article  MATH  MathSciNet  Google Scholar 

  31. I. Gordon, J. T. Stafford, Rational Cherednik algebras and Hilbert schemes II: Representations and sheaves, Duke Math. J. 132 (2006), no. 1, 73–135.

    Article  MATH  MathSciNet  Google Scholar 

  32. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977. Russian transl.: Р. Хартсхорн, Алгебраическая геометрия, Мир, M., 1981.

    MATH  Google Scholar 

  33. J. P. Jouanolou, Théorèmes de Bertini et Applications, Lecture notes, Université Louis Pasteur, 1979.

  34. M. Kashiwara, R. Rouquier, Microlocalization of rational Cherednik algebras, Duke Math. J. 144 (2008), no. 3, 525–573.

    Article  MATH  MathSciNet  Google Scholar 

  35. D. Kazhdan, B. Kostant, S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math. 31 (1978), 481–507.

    Article  MATH  MathSciNet  Google Scholar 

  36. F. Knudsen, D. Mumford, The projectivity of the moduli space of stable curves I: Preliminaries on “det” and “Div”, Math. Scand. 39 (1976), 19–55.

    MATH  MathSciNet  Google Scholar 

  37. G. Laumon, Sur la catégorie dérivée des \(\mathcal{D} \) -modules filtrés, in: Algebraic Geometry (Tokyo/Kyoto, 1982), Lecture Notes in Mathematics, Vol. 1016, Springer, Berlin, 1983, pp. 151–237.

    Chapter  Google Scholar 

  38. G. Laumon, Transformation de Fourier généralisée, arXiv:alg-geom/9603004.

  39. E. Markman, Spectral curves and integrable systems, Compositio Math. 93 (1994), no. 3, 255–290.

    MATH  MathSciNet  Google Scholar 

  40. J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings, Amer. Math. Soc., Providence, RI, corrected printing, 2001.

    MATH  Google Scholar 

  41. N. Nekrasov, Holomorphic bundles and many-body systems, Comm. Math. Phys. 180 (1996), no. 3, 587–603.

    Article  MATH  MathSciNet  Google Scholar 

  42. N. Nekrasov, Infinite-dimensional algebras, many-body systems and gauge theories, in: Moscow Seminar in Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 191, Amer. Math. Soc., Providence, RI, 1999, pp. 263–299.

    Google Scholar 

  43. A. Ogus, V. Vologodsky, Nonabelian Hodge theory in characteristic p, Publ. Math. Inst. Hautes Études Sci. 106 (2007), 1–138.

    MATH  MathSciNet  Google Scholar 

  44. I. Reiner, Maximal Orders. Corrected reprint of the 1975 original. With a foreword by M. J. Taylor, London Mathematical Society Monographs, New Series (28), The Clarendon Press, Oxford University Press, Oxford, 2003.

  45. A. Treibich, J.-L. Verdier, Solitons elliptiques (with an appendix by J. Oesterlé), in: The Grothendieck Festschrift, Vol. 3, Progress in Mathematics, Vol. 88, Birkhaüser, Boston, 1990, pp. 437–480.

    Chapter  Google Scholar 

  46. A. Treibich, J.-L. Verdier, Variétés de Kritchever des solitons elliptiques de KP, in: Proceedings of the Indo-French Conference on Geometry (Bombay, 1989), Hindustan Book Agency, Delhi, 1993, pp. 187–232.

    Google Scholar 

  47. A. Verëvkin, On a noncommutative analogue of the category of coherent sheaves on a projective scheme, in: Proceedings of the second Siberian school “Algebra and Analysis” (Tomsk, 1989), Amer. Math. Soc. Transl., Ser. 2, Vol. 151, Amer. Math. Soc., Providence, RI, 1992, pp. 41–53.

    Google Scholar 

  48. K. Yokogawa, Compactification of moduli of parabolic sheaves and moduli of parabolic Higgs sheaves, J. Math. Kyoto Univ. 33 (1993), no. 2, 451–504.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Nevins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nevins, T. Mirabolic Langlands duality and the quantum Calogero–Moser system. Transformation Groups 14, 931–983 (2009). https://doi.org/10.1007/s00031-009-9068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-009-9068-7

Keywords

Navigation