Skip to main content
Log in

Zariski cancellation problem for noncommutative algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

A noncommutative analogue of the Zariski cancellation problem asks whether \(A[x]\cong B[x]\) implies \(A\cong B\) when A and B are noncommutative algebras. We resolve this affirmatively in the case when A is a noncommutative finitely generated domain over the complex field of Gelfand–Kirillov dimension two. In addition, we resolve the Zariski cancellation problem for several classes of Artin–Schelter regular algebras of higher Gelfand–Kirillov dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abhyankar, S., Eakin, P., Heinzer, W.: On the uniqueness of the coefficient ring in a polynomial ring. J. Algebra 23, 310–342 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abhyankar, S., Moh, T.: Embeddings of the line in the plane. J. Reine Angew. Math. 276, 148–166 (1975)

    MathSciNet  MATH  Google Scholar 

  3. Alaca, S., Williams, K.S.: Introductory Algebraic Number Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  4. Artin, M., Schelter, W.: Graded algebras of global dimension 3. Adv. Math. 66, 171–216 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bavula, V.: The inversion formula for automorphisms of the Weyl algebras and polynomial algebras. J. Pure Appl. Algebra 210, 147–159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bell, J.P.: Division algebras of Gelfand–Kirillov transcendence degree 2. Isr. J. Math. 171, 51–60 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bell, J., Smoktunowicz, A.: Rings of differential operators on curves. Isr. J. Math. 192(1), 297–310 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bell, J., Zhang, J.J.: An isomorphism lemma for graded rings. Proc. Am. Math. Soc. 145(3), 989–994 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ceken, S., Palmieri, J., Wang, Y.-H., Zhang, J.J.: The discriminant controls automorphism group of noncommutative algebras. Adv. Math. 269, 551–584 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ceken, S., Palmieri, J., Wang, Y.-H., Zhang, J.J.: The discriminant criterion and the automorphism groups of quantized algebras. Adv. Math. 286, 754–801 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, K., Young, A., Zhang, J.J.: Discriminant formulas and applications. Algebra Number Theory 10(3), 557–596 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, K., Young, A., Zhang, J.J.: Discriminant and automorphism of Veronese subrings of skew polynomial rings, preprint (2016). arXiv:1606.01296

  13. Crachiola, A.J.: Cancellation for two-dimensional unique factorization domains. J. Pure Appl. Algebra 213(9), 1735–1738 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Danielewski, W.: On the cancellation problem and automorphism groups of affine algebraic varieties, preprint (1989). 8 pages, Warsaw

  15. Fieseler, K.-H.: On complex affine surfaces with \({\mathbb{C}}^+\)-action. Comment. Math. Helv. 69, 5–27 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fujita, T.: On Zariski problem. Proc. Jpn. Acad. 55(A), 106–110 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gupta, N.: On the cancellation problem for the affine space \({\mathbb{A}}^3\) in characteristic \(p\). Inventiones Math. 195(1), 279–288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gupta, N.: On Zariski’s cancellation problem in positive characteristic. Adv. Math. 264, 296–307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hasse, H., Schmidt, F.K.: Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Funktionenkorper einer Unbestimmten. J. Reine Angew. Math. 177, 223–239 (1937)

    MATH  Google Scholar 

  20. Kirkman, E., Kuzmanovich, J., Zhang, J.J.: Invariants of \((-1)\)-skew polynomial rings under permutation representations. In: Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, pp. 155–192, Contemp. Math., vol. 623, Am. Math. Soc., Providence, RI (2014)

  21. Kraft, H.: Challenging problems on affine \(n\)-space. Séminaire Bourbaki, vol. 1994/95. Astérisque, No. 237 (1996). Exp. No. 802, 5, 295–317

  22. Krause, G., Lenagan, T.: Growth of Algebras and Gelfand–Kirillov Dimension, revised edition, Graduate Studeis in Mathematics, vol. 22. AMS, Providence (2000)

    Google Scholar 

  23. Launois, S., Lecoutre, C.: A quadratic Poisson Gel’fand–Kirillov problem in prime characteristic. Trans. Am. Math. Soc. 368(2), 755–785 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Makar-Limanov, L.: On the hypersurface \(x+x^2y+z^2+t^3=0\) in \({ C}^4\) or a \({ C}^3\)-like threefold which is not \({ C}^3\). Isr. J. Math. 96(part B), 419–429 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Makar-Limanov, L.: Locally nilpotent derivations, a new ring invariant and applications, notes (2008). http://www.math.wayne.edu/~lml/lmlnotes

  26. Matsumura, H.: Integrable derivations. Nagoya Math. J. 87, 227–245 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Miyanishi, M., Sugie, T.: Affine surfaces containing cylinderlike open sets. J. Math. Kyoto Univ. 20, 11–42 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Macarro, L.N.: Hasse-Schmidt derivations, divided powers and differential smoothness. Ann. Inst. Fourier (Grenoble) 59(7), 2979–3014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Reiner, I.: Maximal Orders. London Mathematical Society Monographs. New Series, 28. The Clarendon Press, Oxford University Press, Oxford (2003)

  30. Russell, P.: On affine-ruled rational surfaces. Math. Ann. 255(3), 287–302 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  31. Smith, S.P., Zhang, J.J.: A remark on Gelfand–Kirillov dimension. Proc. Am. Math. Soc. 126(2), 349–352 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Suzuki, M.: Propriétés topologiques des polynomes de deux variables complex et automorphisms algébriques de l’espace C2. J. Math. Soc. Jpn. 26(3), 241–257 (1974)

    Article  MATH  Google Scholar 

  33. Stein, W.A.: Algebraic Number Theory: A Computational Approach. preprint, http://wstein.org/books/ant/

  34. van den Essen, A.: Around the Abhyankar–Moh theorem. In: Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000). Springer, Berlin, pp. 283–294 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Bell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, J., Zhang, J.J. Zariski cancellation problem for noncommutative algebras. Sel. Math. New Ser. 23, 1709–1737 (2017). https://doi.org/10.1007/s00029-017-0317-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0317-7

Keywords

Mathematics Subject Classification

Navigation