Skip to main content
Log in

A class of knots with simple SU(2)-representations

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We call a knot in the 3-sphere SU(2)-simple if all representations of the fundamental group of its complement which map a meridian to a trace-free element in SU(2) are binary dihedral. This is a generalization of being a 2-bridge knot. Pretzel knots with bridge number \({\ge }3\) are not SU(2)-simple. We provide an infinite family of knots K with bridge number \({\ge }3\) which are SU(2)-simple. One expects the instanton knot Floer homology \(I^\natural (K)\) of a SU(2)-simple knot to be as small as it can be—of rank equal to the knot determinant \(\text {det}(K)\). In fact, the complex underlying \(I^\natural (K)\) is of rank equal to \(\text {det}(K)\), provided a genericity assumption holds that is reasonable to expect. Thus formally there is a resemblance to strong L-spaces in Heegaard Floer homology. For the class of SU(2)-simple knots that we introduce this formal resemblance is reflected topologically: The branched double covers of these knots are strong L-spaces. In fact, somewhat surprisingly, these knots are alternating. However, the Conway spheres are hidden in any alternating diagram. With the methods we use, we obtain the result that an integer homology 3-sphere which is a graph manifold always admits irreducible representations of its fundamental group. This makes use of a non-vanishing result of Kronheimer–Mrowka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boileau, M., Zieschang, H.: Nombre de ponts et générateurs méridiens des entrelacs de Montesinos. Comment. Math. Helv. 60(2), 270–279 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonahon, F., Siebenmann, L.: New geometric splittings of classical knots and the classification and symmetries of arborescent knots. http://www-bcf.usc.edu/~fbonahon/Research/Preprints/BonSieb.pdf (2010). Accessed 26 July 2016

  3. Cha, J.C., Livingston, C.: KnotInfo: table of knot invariants. http://www.indiana.edu/~knotinfo (2014)

  4. Cohen, D.: Combinatorial Group Theory: A Topological Approach, London Mathematical Society Student Texts, 14. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  5. Collin, O., Saveliev, N.: Equivariant Casson invariants via gauge theory. J. Reine Angew. Math. 541, 143–169 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Cornwell, C.: Character varieties of knot complements and branched double-covers via the cord ring. (2015). arXiv:1509.04962

  7. Dunfield, N.: Private communication

  8. Fukumoto, Y., Kirk, P., Pinzón-Caicedo, J.: Traceless SU(2) representations of 2-stranded tangles. Math. Proc. Camb. Phil. Soc. 162(1), 101–129 (2017)

    Article  MathSciNet  Google Scholar 

  9. Greene, J.: A spanning tree model for the Heegaard Floer homology of a branched double-cover. J. Topol. 6(2), 525–567 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Greene, J., Levine, A.: Strong Heegaard diagrams and strong L-spaces. Algebraic Geom. Topol. 16, 3167–3208 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hedden, M., Herald, C., Kirk, P.: The pillowcase and perturbations of traceless representations of knot groups. Geom. Topol. 18(1), 211–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klassen, E.: Representations of knot groups in SU(2). Trans. Am. Math. Soc. 326(2), 795–828 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Kronheimer, P., Mrowka, T.: Witten’s conjecture and property P. Geom. Topol. 8, 295–310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kronheimer, P., Mrowka, T.: Dehn surgery, the fundamental group and \(SU(2)\). Math. Res. Lett. 11(5–6), 741–754 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kronheimer, P., Mrowka, T.: Knot homology groups from instantons. J. Topol. 4(4), 835–918 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kronheimer, P., Mrowka, T.: Knots, sutures and excision. J. Differ. Geom. 84(2), 301–364 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kronheimer, P., Mrowka, T.: Instanton Floer homology and the Alexander polynomial. Algebr. Geom. Topol. 10(3), 1715–1738 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kronheimer, P., Mrowka, T.: Khovanov homology is an unknot-detector. Publ. Math. Inst. Hautes Etudes Sci. No. 113, 97–208 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lickorish, W.: Introduction to Knot Theory, Graduate Texts in Mathematics 175. Springer, Berlin (1997)

    Book  Google Scholar 

  20. Lim, Y.: Instanton homology and the Alexander polynomial. Proc. Am. Math. Soc. 138, 3759–3768 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, J.: \(SU(2)\)-cyclic surgeries on knots. Int Math Res Notices 2016(19), 6018–6033 (2015)

  22. Lobb, A., Zentner, R.: On spectral sequences from Khovanov homology. (2013) Preprint. arXiv:1310.7909

  23. Menasco, W.: Closed incompressible surfaces in alternating knot and link complements. Topology 23(1), 37–44 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Montesinos, J.: Revêtements ramifiés de noeuds, espaces fibrés de Seifert et scindements de Heegaard. Lecture Notes of a Conference in Orsay, spring (1976)

  25. Moser, L.: Elementary surgery along a torus knot. Pac. J. Math. 38(2), 737–745 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Motegi, K.: Haken manifolds and representations of their fundamental group in \(SL(2,\mathbb{C})\). Topol. Appl. 29, 207–212 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ozsváth, P., Szabó, Z.: Holomorphic disks and topological invariants for closed three-manifolds. Ann. Math. (2) 159(3), 1027–1158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ozsváth, P., Szabó, Z.: Holomorphic disks and three-manifold invariants: properties and applications. Ann. Math. 159(3), 1159–1245 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saveliev, N.: Invariants for Homology 3-Spheres, Encyclopaedia of Mathematical Sciences, vol. 140. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  30. Schreier, O.: Über die gruppen \(A^{a}B^{b}=1\). Abh. Math. Sem. Univ. Hamb. 3(1), 167–169 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  31. Thistlethwaite, M.: On the algebraic part of an alternating link. Pac. J. Math. 151(2), 317–333 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zentner, R.: Representation spaces of pretzel knots. Algebr. Geom. Topol. 11(5), 2941–2970 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Zentner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zentner, R. A class of knots with simple SU(2)-representations. Sel. Math. New Ser. 23, 2219–2242 (2017). https://doi.org/10.1007/s00029-017-0314-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0314-x

Mathematics Subject Classification

Navigation