Skip to main content
Log in

Transcendental Hodge algebra

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The transcendental Hodge lattice of a projective manifold M is the smallest Hodge substructure in pth cohomology which contains all holomorphic p-forms. We prove that the direct sum of all transcendental Hodge lattices has a natural algebraic structure, and compute this algebra explicitly for a hyperkähler manifold. As an application, we obtain a theorem about dimension of a compact torus T admitting a holomorphic symplectic embedding to a hyperkähler manifold M. If M is generic in a d-dimensional family of deformations, then \(\dim T\ge 2^{[(d+1)/2]}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beauville, A.: Varietes Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18, 755–782 (1983)

    Article  MATH  Google Scholar 

  2. Besse, A.: Einstein Manifolds. Springer, New York (1987)

    Book  MATH  Google Scholar 

  3. Bogomolov, F.A.: On the decomposition of Kähler manifolds with trivial canonical class. Math. USSR-Sb. 22, 580–583 (1974)

    Article  MATH  Google Scholar 

  4. Cattani, E., Kaplan, A.: Algebraicity of Hodge loci for variations of Hodge structure. In: Hodge Theory, Complex Geometry, and Representation Theory, vol. 608. American Mathematical Society, Providence (2014)

  5. Deligne, P.: A letter to Carlos Simpson, referred to in [13]

  6. Griffiths, P.A. (ed.): Topics in Transcendental Algebraic Geometry. Annals of Mathematics Studies, vol. 106, pp. 101–119. Princeton University Press, Princeton, NJ (1984)

  7. Kaledin, D., Verbitsky, M.: Partial resolutions of Hilbert type, Dynkin diagrams, and generalized Kummer varieties. arXiv:math/9812078

  8. Kurnosov, N.: Absolutely trianalytic tori in the generalized Kummer variety. arXiv:1504.08010

  9. Moonen, B.: Notes on Mumford–Tate groups. http://www.math.ru.nl/~bmoonen/Lecturenotes/CEBnotesMT

  10. Mumford, D.: Families of abelian varieties. In: Algebraic Groups and Discontinuous Subgroups. Proceedings of Symposium on Pure Mathematics, Boulder, Colo, pp. 347–351. American Mathematical Society, Providence (1965)

  11. Peters, C.A.M., Steenbrink, J.H.M.: Mixed Hodge structures, vol. 52, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin (2008)

  12. Shimura, G., Taniyama, Y.: Complex Multiplication of Abelian Varieties and Its Applications to Number Theory, vol. 6. The Mathematical Society of Japan, Tokyo (1961)

    MATH  Google Scholar 

  13. Simpson, C.T.: Nonabelian Hodge theory. In: Proceedings of the International Congress of Mathematicians, (Kyoto, 1990), pp. 747–756. The Mathematical Society of Japan, Tokyo (1991)

  14. Soldatenkov, A., Verbitsky, M.: Subvarieties of hypercomplex manifolds with holonomy in SL(n, H). J. Geom. Phys. 62(11), 2234–2240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Soldatenkov, A., Verbitsky, M.: \(k\)-symplectic structures and absolutely trianalytic subvarieties in hyperkähler manifolds. J. Geom. Phys. 92, 147–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Verbitsky, M.: Cohomology of compact hyperkähler manifolds. arxiv:alg-geom/9501001

  17. Verbitsky, M.: Cohomology of compact hyperkähler manifolds and its applications. GAFA 6(4), 601–612 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Verbitsky, M.: Hyperkähler and holomorphic symplectic geometry I. J. Algebr. Geom. 5(3), 401–415 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Verbitsky, M.: Trianalytic subvarieties of hyperkähler manifolds. GAFA 5(1), 92–104 (1995), also published as Hyperkähler embeddings and holomorphic symplectic geometry II in arxiv:alg-geom/9403006

  20. Verbitsky, M.: Hypercomplex varieties. Commun. Anal. Geom. 7(2), 355–396 (1999). arxiv:alg-geom/9703016

  21. Verbitsky, M.: Trianalytic subvarieties of the Hilbert scheme of points on a K3 surface. GAFA 8, 732–782 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Verbitsky, M.: Subvarieties in non-compact hyperkähler manifolds. Math. Res. Lett. 11(4), 413–418 (2004). arxiv:math.AG/0312520

  23. Verbitsky, M.: Wirtinger numbers and holomorphic symplectic immersions. Sel. Math. (N.S.) 10(4), 551–559 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Verbitsky, M.: A global Torelli theorem for hyperkähler manifolds. Duke Math. J. 162, 2929–2986 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Voisin, C.: Hodge Theory and Complex Algebraic Geometry I, II. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  26. Weyl, H.: The Classical Groups, Their Invariants and Representations. Princeton University Press, New York (1939)

    MATH  Google Scholar 

  27. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  28. Zarhin, Y.G.: Hodge groups of K3 surfaces. J. Reine Angew. Math. 341, 193–220 (1983)

    MathSciNet  Google Scholar 

  29. Zarhin, Y.G.: Linear semisimple Lie algebras containing an operator with small number of eigenvalues. Arch. Math. (Basel) 46(6), 522–532 (1986)

    Article  MathSciNet  Google Scholar 

  30. Zarhin, Y.G.: Linear irreducible Lie algebras and Hodge structures. Algebraic geometry (Chicago, IL, 1989). Lecture Notes in Math., vol. 1479, pp. 281–297. Springer, Berlin (1991)

  31. Zarkhin, Y.G.: Math. USSR-Izv. 24(2), 245–281 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misha Verbitsky.

Additional information

Partially supported by RSCF, grant number 14-21-00053 within AG laboratory, NRU-HSE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbitsky, M. Transcendental Hodge algebra. Sel. Math. New Ser. 23, 2203–2218 (2017). https://doi.org/10.1007/s00029-017-0307-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0307-9

Keywords

Mathematics Subject Classification

Navigation