Skip to main content
Log in

Rank 2 wall-crossing and the Serre correspondence

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study Quot schemes of 0-dimensional quotients of sheaves on threefold X. When the sheaf \({{\mathcal {R}}}\) is rank 2 and reflexive, we prove that the generating function of Euler characteristics of these Quot schemes is a power of the MacMahon function times a polynomial. This polynomial is itself the generating function of Euler characteristics of Quot schemes of a certain 0-dimensional sheaf, which is supported on the locus where \({{\mathcal {R}}}\) is not locally free. In the case \(X = {{\mathbb {C}}}^3\) and \({{\mathcal {R}}}\) is equivariant, we use our result to prove an explicit product formula for the generating function. This formula was first found using localization techniques in previous joint work with Young. Our results follow from Hartshorne’s Serre correspondence and a rank 2 version of a Hall algebra calculation by Stoppa and Thomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bridgeland, T.: Hall algebras and curve counting. J. Am. Math. Soc. 2(4), 969–998 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bridgeland, T.: An introduction to motivic Hall algebras. Adv. Math. 229, 102–138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eisenbud, D.: Commutative Algebra, with a View Towards Algebraic Geometry. Springer, Berlin (1999)

    Google Scholar 

  4. Gholampour, A., Kool, M.: Stable reflexive sheaves and localization. J. Pure Appl. Algebra (2013). arXiv:1308.3688

  5. Gholampour, A., Kool, M., Young, B.: Rank 2 sheaves on toric 3-folds: classical and virtual counts (2015). arXiv:1509.03536

  6. Gholampour, A., Kool, M., Young, B.: Work in progress

  7. Hartshorne, R.: Stable vector bundles of rank 2 on \({\mathbb{P}}^3\). Math. Ann. 238, 229–280 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartshorne, R.: Stable reflexive sheaves. Math. Ann. 254, 121–176 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  10. Joyce, D.: Configurations in abelian categories. I. Basic properties and moduli stacks. Adv. Math. 203, 194–255 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Joyce, D.: Configurations in abelian categories. II. Ringel–Hall algebras. Adv. Math. 210, 635–706 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Joyce, D.: Configurations in abelian categories. III. Stability conditions and identities. Adv. Math. 215, 153–219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Joyce, D.: Configurations in abelian categories. IV. Invariants and changing stability conditions. Adv. Math. 217, 125–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Klyachko, A.A.: Equivariant bundles on toral varieties. Math. USSR Izv. 35, 337–375 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Klyachko, A.A.: Vector bundles and torsion free sheaves on the projective plane. Preprint Max Planck Institut für Mathematik (1991)

  16. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations (2008). arXiv:0811.2435

  17. Pandharipande, R., Thomas, R.P.: Curve counting via stable pairs in the derived category. Invent. Math. 178, 407–447 (2009). arXiv:0707.2348

    Article  MathSciNet  MATH  Google Scholar 

  18. Pandharipande, R., Thomas, R.P.: The 3-fold vertex via stable pairs. Geom. Topol. 13, 1835–1876 (2009). arXiv:0709.3823

    Article  MathSciNet  MATH  Google Scholar 

  19. Stanley, R.P.: Enumerative Combinatorics, Volume 2, Cambridge Studies in Adv. Math. 62 (2001)

  20. Stoppa, J., Thomas, R.P.: Hilbert schemes and stable pairs: GIT and derived category wall crossing. Bull. Soc. Math. Fr. 139, 297–339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Toda, Y.: Hall algebras in the derived category and higher rank DT invariants (2016). arXiv:1601.07519

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Gholampour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholampour, A., Kool, M. Rank 2 wall-crossing and the Serre correspondence. Sel. Math. New Ser. 23, 1599–1617 (2017). https://doi.org/10.1007/s00029-016-0293-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0293-3

Mathematics Subject Classification

Navigation