Skip to main content
Log in

Complete intersections in spherical varieties

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let G be a complex reductive algebraic group. We study complete intersections in a spherical homogeneous space G / H defined by a generic collection of sections from G-invariant linear systems. Whenever nonempty, all such complete intersections are smooth varieties. We compute their arithmetic genus as well as some of their \(h^{p,0}\) numbers. The answers are given in terms of the moment polytopes and Newton–Okounkov polytopes associated to G-invariant linear systems. We also give a necessary and sufficient condition on a collection of linear systems so that the corresponding generic complete intersection is nonempty. This criterion applies to arbitrary quasi-projective varieties (i.e., not necessarily spherical homogeneous spaces). When the spherical homogeneous space under consideration is a complex torus \((\mathbb {C}^*)^n\), our results specialize to well-known results from the Newton polyhedra theory and toric varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. David Bernstein is the younger brother of Joseph Bernstein. He discovered the famous formula for the number of solutions in \((\mathbb {C}^*)^n\) of a generic system of n polynomial equations with fixed Newton polytopes [2]. This amazing formula inspired much activity that eventually lead to the creation of Newton polyhedra theory and the theory of Newton–Okounkov bodies.

  2. In [20, 21], instead of our notation \(N(\Delta )\), \(N^\circ (\Delta )\) and \(N'(\Delta )\) respectively, the notation \(T(\Delta )\), \(B^+(\Delta )\) and \(B(\Delta )\) is used.

  3. As the referee pointed out, in [7] Brion obtains more general vanishing results for the so-called log-homogeneous varieties. From this he deduces some results on the mixed Hodge structures of complete intersections in log-homogeneous varieties.

References

  1. Alexeev, V., Brion, M.: Toric degeneration of spherical varities. Sel. Math. (N.S.) 10(4), 453–478 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, D.N.: The number of roots of a system of equations. English translation: Functional Anal. Appl. 9 (1975), no. 3, 183–185 (1976)

  3. Berenstein, A., Zelevinsky, A.: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143(1), 77–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58(2), 397–424 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brion, M.: Sur l’image de l’application moment. Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986), 177–192, Lecture Notes in Math., 1296, Springer, Berlin, 1987

  6. Brion, M.: Une extension du théorème de Borel-Weil. Math. Ann. 286(4), 655–660 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brion, M.: Vanishing theorems for Dolbeault cohomology of log homogeneous varieties. Tohoku Math. J. (2) 61(3), 365–392 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carrell, J.B., Lieberman, D.I.: Holomorphic vector fields and Käehler manifolds. Invent. Math. 21, 303–309 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. De Concini, C., Procesi, C.: Complete Symmetric Varieties. Invariant theory (Montecatini, 1982) Lecture Notes in Math., 996. Springer, Berlin, 1–44 (1983)

  10. Gelfand, I.M., Cetlin, M.L.: Finite dimensional representations of the group of unimodular matrices. Doklady Akad. Nauk USSR (N.S.) 71, 825–828 (1950)

    MathSciNet  Google Scholar 

  11. Guillemin, V., Sternberg, S.: Geometric quantization and multiplicities of group representations. Invent. Math. 77, 533–546 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, No. 52. Springer, New York (1977)

    Google Scholar 

  13. Kaveh, K.: Morse theory and Euler characteristic of sections of spherical varieties. Transform. Groups 9(1), 47–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaveh, K.: Crystal bases and Newton–Okounkov bodies. Duke Math. J. 164(13), 2461–2506 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaveh, K., Khovanskii, A.G.: Moment polytopes, semigroup of representations and Kazarnovskii’s theorem. J. Fixed Point Theory Appl. 7(2), 401–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaveh, K., Khovanskii, A.G.: Newton polytopes for horospherical spaces. Mosc. Math. J. 11(2), 265–283 (2011). 407

    MathSciNet  MATH  Google Scholar 

  17. Kaveh, K., Khovanskii, A.G.: Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. Math. (2) 176(2), 925–978 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kaveh, K., Khovanskii, A.G.: Convex bodies associated to actions of reductive groups. Moscow Math. J. 12(2), 369–396 (2012). 461

    MathSciNet  MATH  Google Scholar 

  19. Kazarnovskii, B.: Newton polyhedra and the Bezout formula for matrix-valued functions of finite-dimensional representations. Funct. Anal. Appl. 21(4), 73–74 (1987)

    MathSciNet  Google Scholar 

  20. Khovanskii, A.G.: Newton polyhedra and toroidal varieties. Funkc. Anal. i Priložen. 11(4), 56–64 (1977). 96

    MathSciNet  Google Scholar 

  21. Khovanskii, A.G.: Newton polyhedra and the genus of complete intersections. Funktsional. Anal. i Prilozhen. 12(1), 51–61 (1978)

    Article  MathSciNet  Google Scholar 

  22. Khovanskii, A.G.: Newton polyhedra and irreducible components of complete intersections. Izv. Ross. Akad. Nauk Ser. Mat. 80(1), 281–304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khovanskii, A.G., Pukhlikov, A.V.: Finitely additive measures of virtual polyhedra. (Russian) Algebra i Analiz 4 (1992), no. 2, 161–185; translation in St. Petersburg Math. J. 4 (1993), no. 2, 337–356

  24. Kiritchenko, V.: Chern classes of reductive groups and an adjunction formula. Ann. Inst. Fourier (Grenoble) 56(4), 1225–1256 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kiritchenko, V.: On intersection indices of subvarieties in reductive groups. Mosc. Math. J. 7(3), 489–505 (2007). 575

    MathSciNet  MATH  Google Scholar 

  26. Kushnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. (French). Invent. Math. 32(1), 1–31 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lazarsfeld, R., Mustata, M.: Convex bodies associated to linear series. Ann. Sci. de l’ENS 42(5), 783–835 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Littelmann, P.: Cones, crystals, and patterns. Transform. Groups 3(2), 145–179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. McMullen, P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. Lond. Math. Soc. (3) 35(1), 113–135 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ness, L.: A stratification of the null cone via the moment map. With an appendix by David Mumford. Am. J. Math. 106(6), 1281–1329 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Okounkov, A.: Brunn-Minkowski inequality for multiplicities. Invent. Math. 125(3), 405–411 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Okounkov, A.: A remark on the Hilbert polynomial of a spherical variety. Funct. Anal. Appl. 31, 82–85 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Okounkov, A.: Why would multiplicities be log-concave? The orbit method in geometry and physics (Marseille, 2000), 329–347, Progr. Math., 213, Birkhäuser Boston, Boston, MA (2003)

  34. Perrin, N.: On the geometry of spherical varieties. Transform. Groups 19(1), 171–223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Popov, V.L.: Contractions of actions of reductive algebraic groups. Mat. Sb. (N.S.) 130(172)(3), 310–334 (1986). 431

    MathSciNet  MATH  Google Scholar 

  36. Popov, V.L., Vinberg, E.B.: A certain class of quasihomogeneous affine varieties. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 36, 749–764 (1972)

    MathSciNet  Google Scholar 

  37. Samuel, P., Zariski, O.: Commutative algebra, vol. II. Reprint of the 1960 edition. Graduate Texts in Mathematics, vol. 29

  38. Timashev, D.: Homogeneous spaces and equivariant embeddings. Encyclopedia of Mathematical Sciences, 138. Invariant Theory and Algebraic Transformation Groups, 8. Springer, Heidelberg (2011)

  39. Viro, O. Ya.: Some integral calculus based on Euler characteristic. Topology and geometry—Rohlin Seminar, 127–138, Lecture Notes in Math., 1346, Springer, Berlin (1988)

Download references

Acknowledgments

We would like to thank Michel Brion for telling us about some references regarding moment polytopes of G-varieties, as well as the referee for some corrections and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiumars Kaveh.

Additional information

Dedicated to Joseph Bernstein on the occasion of his 70th birthday.

The first author is partially supported by a National Science Foundation Grant (Grant ID: 1200581).

The second author is partially supported by the Canadian Grant No. 156833-12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh, K., Khovanskii, A.G. Complete intersections in spherical varieties. Sel. Math. New Ser. 22, 2099–2141 (2016). https://doi.org/10.1007/s00029-016-0271-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0271-9

Keywords

Mathematics Subject Classification

Navigation