Skip to main content
Log in

Poisson–de Rham homology of hypertoric varieties and nilpotent cones

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove a conjecture of Etingof and the second author for hypertoric varieties that the Poisson–de Rham homology of a unimodular hypertoric cone is isomorphic to the de Rham cohomology of its hypertoric resolution. More generally, we prove that this conjecture holds for an arbitrary conical variety admitting a symplectic resolution if and only if it holds in degree zero for all normal slices to symplectic leaves. The Poisson–de Rham homology of a Poisson cone inherits a second grading. In the hypertoric case, we compute the resulting 2-variable Poisson–de Rham–Poincaré polynomial and prove that it is equal to a specialization of an enrichment of the Tutte polynomial of a matroid that was introduced by Denham (J Algebra 242(1):160–175, 2001). We also compute this polynomial for S3-varieties of type A in terms of Kostka polynomials, modulo a previous conjecture of the first author, and we give a conjectural answer for nilpotent cones in arbitrary type, which we prove in rank less than or equal to 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. A precise definition of a conical symplectic resolution is given at the beginning of Sect. 3.

  2. Thanks to the anonymous referee for this observation.

  3. The authors thank Carl Mautner for explaining the following two lemmas and their proofs.

  4. More generally, for any triangulated category with a t-structure, if M is a complex whose cohomology is concentrated in negative degrees and N is a complex whose cohomology is concentrated in nonnegative degrees, then \({\text {Hom}}(M, N) = 0\).

  5. It is not a priori clear that \(L_S\) has regular singularities, though this will follow from Corollary 4.5.

  6. Namikawa works in greater generality, not requiring that X be conical. He also uses an a priori different local system than \(L_S\), notated by \(\mathcal {H}\), and defined only on codimension two leaves. In particular, \(\mathcal {H}\) is defined as a topological local system, unlike \(L_S\). However, it follows from the discussion in [31, §4] that \(L_S\) and \(\mathcal {H}\) have the same monodromy; hence, the underlying topological local system of \(L_S\) is isomorphic to \(\mathcal {H}\). Moreover, under our assumptions, we show that \(L_S\) has regular singularities, so it can be viewed as a topological local system isomorphic to \(\mathcal {H}\).

  7. As explained in [32], the full version of the conjecture [32, 3.4] applied to a slice \(X_S\) with a symplectic dual would imply that \(\dim {\text {HP}}_{0}(X_S) = {\text {rk}}K_S\); thus, the hypothesis of Theorem 4.1 would be satisfied.

  8. More precisely, the elements of the image of this orbit under the Killing form isomorphism \(\mathfrak {sl}_r^* \rightarrow \mathfrak {sl}_r\) have this Jordan decomposition.

  9. In fact, in [14] the conclusion \(M \cong T\) of Theorem 4.1 is proved first, and then, the hypothesis follows.

  10. The factor of 2 is there because \(\mathfrak {h}^*\) sits in degree 2.

  11. In fact, in these cases, the result also follows from Example 8.8 and Proposition 8.12.

References

  1. Alev, J., Lambre, T.: Comparaison de l’homologie de Hochschild et de l’homologie de Poisson pour une déformation des surfaces de Klein, Algebra and operator theory (Tashkent, 1997). Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  2. Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analysis and Topology on Singular Spaces, I (Luminy, 1981), Astérisque, vol. 100, pp. 5–171. Soc. Math. France, Paris (1982)

  3. Beauville, A.: Symplectic singularities. Invent. Math. 139(3), 541–549 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beynon, W.M., Lusztig, G.: Some numerical results on the characters of exceptional Weyl groups. Math. Proc. Camb. Philos. Soc. 84(3), 417–426 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braden, T., Licata, A., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions II: category \(\cal O\) and symplectic duality (2014). arXiv:1407.0964

  6. Borho, W., MacPherson, R.: Partial resolutions of nilpotent varieties. In: Analysis and Topology on Singular Spaces, II, III (Luminy, 1981), Astérisque, vol. 101, pp. 23–74. Soc. Math. France, Paris (1983)

  7. Braden, T., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions I: local and global structure. arXiv:1208.3863

  8. Bellamy, G., Schedler, T.: On the (non)existence of symplectic resolutions for imprimitive symplectic reflection groups. (2013). arXiv:1309.3558

  9. Carter, R.W.: Finite Groups of Lie Type. Wiley Classics Library, Wiley, Chichester (1993). (Conjugacy classes and complex characters, Reprint of the 1985 original, A Wiley-Interscience Publication)

    Google Scholar 

  10. Denham, G.: The combinatorial Laplacian of the Tutte complex. J. Algebra 242(1), 160–175 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Etingof, P., Gong, S., Pacchiano, A., Ren, Q., Schedler, T.: Computational approaches to Poisson traces associated to finite subgroups of \(\text{ Sp }_{2n}({\mathbb{C}})\). Exp. Math. 21(2), 141–170 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Etingof, P., Schedler, T.: Coinvariants of Lie algebras of vector fields on algebraic varieties. arXiv:1211.1883

  13. Etingof, P., Schedler, T.: Poisson traces and \(D\)-modules on Poisson varieties. Geom. Funct. Anal. 20(4), 958–987 (2010). (with an appendix by Ivan Losev)

    Article  MathSciNet  MATH  Google Scholar 

  14. Etingof, P., Schedler, T.: Traces on finite \({\cal W}\)-algebras. Transform. Groups 15(4), 843–850 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Etingof, P., Schedler, T.: Poisson traces for symmetric powers of symplectic varieties. Int. Math. Res. Not. (2013). doi:10.1093/imrn/rnt031; arXiv:1109.4712

  16. Gan, W.L., Ginzburg, V.: Quantization of Slodowy slices. Int. Math. Res. Not. 2000(5), 243–255 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Greuel, G.-M.: Der Gauss–Manin–Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Math. Ann. 214, 235–266 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grothendieck, A.: Représentations linéaires et compactification profinie des groupes discrets. Manuscr. Math. 2, 375–396 (1970)

    Article  MATH  Google Scholar 

  19. Hartshorne, R.: Algebraic de Rham cohomology. Manuscr. Math. 7, 125–140 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hartshorne, R.: On the De Rham cohomology of algebraic varieties. Inst. Hautes Études Sci. Publ. Math. 45(1), 5–99 (1975)

  21. Hausel, T., Sturmfels, B.: Toric hyperKähler varieties. Doc. Math. 7, 495–534 (2002). (electronic)

    MathSciNet  MATH  Google Scholar 

  22. Kaledin, D.: Symplectic singularities from the Poisson point of view. J. Reine Angew. Math. 600, 135–156 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Kaledin, D.: Derived equivalences by quantization. Geom. Funct. Anal. 17(6), 1968–2004 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaledin, D.: Geometry and topology of symplectic resolutions. In: Algebraic Geometry—Seattle 2005. Part 2, Proceedings of Symposium in Pure Mathematics, vol. 80, pp. 595–628. Am. Math. Soc., Providence, RI (2009)

  25. Łojasiewicz, S.: Triangulation of semi-analytic sets. Ann. Scuola Norm. Sup. Pisa (3) 18, 449–474 (1964)

    MathSciNet  MATH  Google Scholar 

  26. Lusztig, G.: Green polynomials and singularities of unipotent classes. Adv. Math. 42(2), 169–178 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lusztig, G.: Characters of Reductive groups over a finite field, Annals of Mathematics Studies, vol. 107. Princeton University Press, Princeton (1984)

  28. Maffei, A.: Quiver varieties of type A. Comment. Math. Helv. 80(1), 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Namikawa, Y.: Fundamental groups of symplectic singularities. arXiv:1301.1008

  30. Namikawa, Y.: Flops and Poisson deformations of symplectic varieties. Publ. Res. Inst. Math. Sci. 44(2), 259–314 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Namikawa, Y.: Poisson deformations of affine symplectic varieties. Duke Math. J. 156(1), 51–85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Proudfoot, N.: Hypertoric Poisson homology in degree zero. Algebr. Geom. 2, 1–10 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Proudfoot, N., Webster, B.: Intersection cohomology of hypertoric varieties. J. Algebr. Geom. 16(1), 39–63 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Steinberg, R.: A geometric approach to the representations of the full linear group over a Galois field. Trans. Am. Math. Soc. 71, 274–282 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  35. Webster, B.: Singular blocks of parabolic category \({\cal O}\) and finite W-algebras. J. Pure Appl. Algebra 215(12), 2797–2804 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank G. Denham, P. Etingof, C. Mautner, and V. Ostrik for their help with this project. In particular, we thank Mautner for help with Lemmas 3.4 and 3.5 and Etingof for useful discussions about Proposition 2.1 and Conjecture 8.4, and for helpful comments on an earlier version. We are grateful to G. Lusztig for suggesting the formula of Conjecture 8.4 and for introducing us to the material in Remark 8.10. We would also like to thank the anonymous referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Schedler.

Additional information

Nicholas Proudfoot is supported by NSF grant DMS-0950383.

Travis Schedler is supported by NSF grant DMS-1406553.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proudfoot, N., Schedler, T. Poisson–de Rham homology of hypertoric varieties and nilpotent cones. Sel. Math. New Ser. 23, 179–202 (2017). https://doi.org/10.1007/s00029-016-0232-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0232-3

Mathematics Subject Classification

Navigation