Skip to main content
Log in

Gaudin subalgebras and wonderful models

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Gaudin Hamiltonians form families of r-dimensional abelian Lie subalgebras of the holonomy Lie algebra of the arrangement of reflection hyperplanes of a Coxeter group of rank r. We consider the set of principal Gaudin subalgebras, which is the closure in the appropriate Grassmannian of the set of spans of Gaudin Hamiltonians. We show that principal Gaudin subalgebras form a smooth projective variety isomorphic to the De Concini–Procesi compactification of the projectivized complement of the arrangement of reflection hyperplanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We are grateful to Artie Prendergast-Smith, who explained this to us.

References

  1. Aguirre, L.: The variety of principal Gaudin subalgebras for an arbitrary hyperplane arrangement (in preparation)

  2. Aguirre, L.: On the notion of Gaudin subalgebras for general hyperplane arrangements. PhD Thesis 21880, ETH Zurich (2014). doi:10.3929/ethz-a-010294025

  3. Aguirre, L., Felder, G., Veselov, A.P.: Gaudin subalgebras and stable rational curves. Compos. Math. 147(5), 1463–1478 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carr, M., Devadoss, S.L.: Coxeter complexes and graph-associahedra. Topol. Appl. 153(12), 2155–2168 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cherednik, I.: Monodromy representations for generalized Knizhnik–Zamolodchikov equations and Hecke algebras. Publ. Res. Inst. Math. Sci. 27(5), 711–726 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Concini, C., Procesi, C.: Wonderful models of subspace arrangements. Sel. Math. (N.S.) 1, 459–494 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Concini, C., Procesi, C.: Hyperplane arrangements and Holonomy equations. Sel. Math. New Ser. 1(3), 495–535 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Devadoss, S.L.: A realization of graph associahedra. Discr. Math. 309(1), 271–276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gaiffi, G.: Real structures of models of arrangements. Int. Math. Res. Not. 2004(64), 3439–3467 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  11. Kapranov, M.M.: The permutoassociahedron, Mac Lane’s coherence theorem and asymptotic zones for the KZ equation. J. Pure Appl. Algebra 85(2), 119–142 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kohno, T.: Holonomy Lie algebras, logarithmic connections and the lower central series of fundamental groups. Singularities (Iowa City, IA, 1986), 171–182, Contemp. Math. 90, Am. Math. Soc., Providence, RI, (1989)

  13. Leibman, A.: Some monodromy representations of generalized braid groups. Commun. Math. Phys. 164(2), 293–304 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Markl, M.: Simplex, associahedron, and cyclohedron, Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), 235–265, Contemp. Math. 227, AMS, (1999)

  15. Schöbel, K., Veselov, A.P.: Separation coordinates, moduli spaces and Stasheff polytopes. Commun. Math. Phys. 337, 1255–1274 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stasheff, J.: Homotopy associativity of \(H\)-spaces. I, II. Trans. Am. Math. Soc. 108, 275–312 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stasheff, J.D.: From operads to physically inspired theories. Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), 53–81, Contemp. Math. 202, AMS, (1997)

  18. Toledano-Laredo, V.: Quasi-Coxeter Algebras, Dynkin Diagram Cohomology and Quantum Weyl Groups. International Mathematics Research Papers 2008, article ID rpn009, 167 pages

  19. Vinberg, E.B.: Some commutative subalgebras of a universal enveloping algebra. Math. USSR-Izv. 36(1), 1–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yuzvinskii, S.A.: Orlik-Solomon algebras in algebra and topology. Russ. Math. Surv. 56(2), 293–364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to I. Cherednik, M. Kapranov, T. Kohno and A. Prendergast-Smith for helpful and stimulating discussions. The work of APV was partly supported by the EPSRC (Grant EP/J00488X/1). The work of GF was partly supported by the Swiss National Science Foundation (National Centre of Competence in Research “The Mathematics of Physics—SwissMAP”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Felder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, L., Felder, G. & Veselov, A.P. Gaudin subalgebras and wonderful models. Sel. Math. New Ser. 22, 1057–1071 (2016). https://doi.org/10.1007/s00029-015-0213-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0213-y

Mathematics Subject Classification

Navigation