Skip to main content
Log in

Categorification of tensor powers of the vector representation of \(U_q({\mathfrak {gl}}(1|1))\)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We consider the monoidal subcategory of finite-dimensional representations of \(U_q(\mathfrak {gl}(1|1))\) generated by the vector representation, and we provide a diagram calculus for the intertwining operators, which allows to compute explicitly the canonical basis. We construct then a categorification of these representations and of the action of both \(U_q(\mathfrak {gl}(1|1))\) and the intertwining operators using subquotient categories of the BGG category .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We use this notation because \(W_{\mathfrak {p}}\) and \(W_{\mathfrak {q}}\) will correspond later to two parabolic subalgebras \({\mathfrak {p}},{\mathfrak {q}}\subset \mathfrak {gl}_n\).

References

  1. Alexander, J.W.: Topological invariants of knots and links. Trans. Am. Math. Soc. 30(2), 275–306 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agerholm, T., Mazorchuk, V.: On selfadjoint functors satisfying polynomial relations. J. Algebra 330, 448–467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Achar, P.N., Stroppel, C.: Completions of Grothendieck groups. Bull. Lond. Math. Soc. 45(1), 200–212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auslander, M.: Representation theory of Artin algebras. I, II. Commun. Algebra 1, 177–268 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auslander, M.: Representation theory of Artin algebras. I, II. Commun. Algebra 1, 269–310 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernšteĭn, I.N., Gel’fand, I.M., Gel’fand, S.I.: A certain category of \({\mathfrak{g}}\)-modules. Funkcional. Anal. i Priložen. 10(2), 1–8 (1976)

    MathSciNet  Google Scholar 

  7. Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9(2), 473–527 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berele, A., Regev, A.: Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras. Adv. Math. 64(2), 118–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cautis, S., Kamnitzer, J., Morrison, S.: Webs and quantum skew Howe duality. Math. Ann. 360(1–2), 351–390 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cline, E., Parshall, B., Scott, L.: Finite-dimensional algebras and highest weight categories. J. Reine Angew. Math. 391, 85–99 (1988)

    MathSciNet  MATH  Google Scholar 

  11. Cheng, S.-J., Wang, W.: Howe duality for Lie superalgebras. Compositio Math. 128(1), 55–94 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, S.-J., Wang, W.: Dualities for Lie superalgebras (2010). arXiv:1001.0074

  13. Frenkel, I.B., Khovanov, M.G.: Canonical bases in tensor products and graphical calculus for \(U_q({\mathfrak{s}}{\mathfrak{l}}_2)\). Duke Math. J. 87(3), 409–480 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Frenkel, I.B., Khovanov, M.G., Kirillov Jr, A.A.: Kazhdan–Lusztig polynomials and canonical basis. Transform. Groups 3(4), 321–336 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Futorny, V., König, S., Mazorchuk, V.: Categories of induced modules and standardly stratified algebras. Algebr. Represent. Theory 5(3), 259–276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frenkel, I., Khovanov, M., Stroppel, C.: A categorification of finite-dimensional irreducible representations of quantum \({\mathfrak{sl}} _2\) and their tensor products. Selecta Math. (N.S.) 12(3–4), 379–431 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Frisk, A.: Dlab’s theorem and tilting modules for stratified algebras. J. Algebra 314(2), 507–537 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)

    MathSciNet  MATH  Google Scholar 

  19. Humphreys, J.E.: Representations of semisimple Lie algebras in the BGG category \({\cal O}\). In: Graduate Studies in Mathematics, vol. 94. American Mathematical Society, Providence, RI (2008)

  20. Hill, D., Wang, W.: Categorification of quantum Kac–Moody superalgebras. Trans. Am. Math. Soc. 367(2), 1183–1216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–426 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khovanov, M.: How to categorify one-half of quantum \({\mathfrak{gl}} (1|2)\) (2010). arXiv:1007.3517

  23. Kim, D.: Graphical calculus on representations of quantum Lie algebras. ProQuest LLC, Ann Arbor, MI, 2003, Thesis (Ph.D.)—University of California, Davis

  24. Kang, S.-J., Kashiwara, M., Oh, S.-J.: Supercategorification of quantum Kac–Moody algebras II. Adv. Math. 265, 169–240 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53(2), 165–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Khovanov, M., Lauda, A.D.: A diagrammatic approach to categorification of quantum groups II. Trans. Am. Math. Soc. 363(5), 2685–2700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Khovanov, M., Seidel, P.: Quivers, Floer cohomology, and braid group actions. J. Am. Math. Soc. 15(1), 203–271 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Khovanov, M., Sussan, J.: A categorification of the positive half of quantum \({\mathfrak{gl}}(m|1)\) (2014). arXiv:1406.1676

  30. Kuperberg, G.: Spiders for rank \(2\) Lie algebras. Commun. Math. Phys. 180(1), 109–151 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lusztig, G.: Introduction to Quantum Groups. Modern Birkhäuser Classics. Birkhäuser/Springer, New York (2010)

  32. Mazorchuk, V.: Stratified Algebras Arising in Lie theory. Representations of finite dimensional algebras and related topics in Lie theory and geometry, Fields Inst. Commun., vol. 40, Amer. Math. Soc., Providence, RI, pp. 245–260 (2004)

  33. Mitsuhashi, H.: Schur–Weyl reciprocity between the quantum superalgebra and the Iwahori–Hecke algebra. Algebr. Represent. Theory 9(3), 309–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Miyachi, J.-I.: Grothendieck groups of unbounded complexes of finitely generated modules. Arch. Math. (Basel) 86(4), 317–320 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Morrison, S.E.: A diagrammatic category for the representation theory of \(U_q({\mathfrak{sl}}_n)\), ProQuest LLC, Ann Arbor, MI, 2007, Thesis (Ph.D.)—University of California, Berkeley

  36. Manolescu, C., Ozsváth, P., Szabó, Z., Thurston, D.: On combinatorial link Floer homology. Geom. Topol. 11, 2339–2412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mazorchuk, V., Stroppel, C.: Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module. Trans. Am. Math. Soc. 357(7), 2939–2973 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Mazorchuk, V., Stroppel, C.: Categorification of (induced) cell modules and the rough structure of generalised Verma modules. Adv. Math. 219(4), 1363–1426 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mazorchuk, V., Stroppel, C.: A combinatorial approach to functorial quantum \(\mathfrak{sl}_k\) knot invariants. Am. J. Math. 131(6), 1679–1713 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ohtsuki, T.: Quantum Invariants: Volume 29 of Series on Knots and Everything. World Scientific Publishing Co. Inc., River Edge (2002)

  41. Ozsvath, P., Szabo, Z.: Holomorphic disks and link invariants. (2005). arXiv:math/0512286

  42. Rouquier, R.: 2-Kac–Moody algebras (2008). arXiv:0812.5023

  43. Sartori, A.: A diagram algebra for Soergel modules corresponding to smooth Schubert varieties. Trans. Amer. Math. Soc. (2013). doi:10.1090/tran/6346

  44. Sartori, A.: The Alexander polynomial as quantum invariant of links. Ark. Mat. 53(1), 177–202 (2015) (2013)

  45. Sartori, A.: Categorification of tensor powers of the vector representation of \(U_q({\mathfrak{g}}{\mathfrak{l}} (1|1))\). Ph.D. thesis, Universität Bonn, 2014. http://hss.ulb.uni-bonn.de/2014/3635/3635

  46. Sergeev, A.N.: Tensor algebra of the identity representation as a module over the Lie superalgebras \({\rm Gl}(n,\,m)\) and \(Q(n)\). Math. Sb. (N.S.) 123(165)(3), 422–430 (1984)

    MathSciNet  Google Scholar 

  47. Soergel, W.: Kategorie \({\cal O}\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3(2), 421–445 (1990)

    MathSciNet  Google Scholar 

  48. Soergel, W.: Kazhdan–Lusztig-Polynome und eine Kombinatorik für Kipp–Moduln. Represent. Theory 1, 37–68 (1997)

    Article  MathSciNet  Google Scholar 

  49. Sartori, A., Stroppel, C.: Categorification of tensor product representations of sl(k) and category O. J. Algebra 428, 256–291 (2015)

  50. Stroppel, C.: Category \({\cal O}\): gradings and translation functors. J. Algebra 268(1), 301–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Stroppel, C.: Categorification of the Temperley–Lieb category, tangles, and cobordisms via projective functors. Duke Math. J. 126(3), 547–596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tian, Y.: A categorification of \(U_q sl(1,1)\) as an algebra (2012). arXiv:1210.5680

  53. Tian, Y.: A categorification of \(U_T sl(1,1)\) and its tensor product representations (2013). arXiv:1301.3986

  54. Viro, O.Y.: Quantum relatives of the Alexander polynomial. Algebra i Analiz 18(3), 63–157 (2006)

    MathSciNet  Google Scholar 

  55. Webster, B.: Knot invariants and higher representation theory (2013). arXiv:1309.3796

  56. Weibel, C.A.: An introduction to homological algebra. In: Garling D.J.H., Tom Dieck T., Walters P. (eds.) Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

  57. Zhang, H.: The quantum general linear supergroup, canonical bases and Kazhdan–Lusztig polynomials. Sci. China Ser. A 52(3), 401–416 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The present work is part of the author’s Ph.D. thesis. The author would like to thank his advisor Catharina Stroppel for her help and support. The author would also like to thank the anonymous referee for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Sartori.

Additional information

This work has been supported by the Graduiertenkolleg 1150, funded by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sartori, A. Categorification of tensor powers of the vector representation of \(U_q({\mathfrak {gl}}(1|1))\) . Sel. Math. New Ser. 22, 669–734 (2016). https://doi.org/10.1007/s00029-015-0202-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0202-1

Keywords

Mathematics Subject Classification

Navigation