Skip to main content
Log in

Derived equivalence for quantum symplectic resolutions

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Using techniques from the homotopy theory of derived categories and noncommutative algebraic geometry, we establish a general theory of derived microlocalization for quantum symplectic resolutions. In particular, our results yield a new proof of derived Beilinson–Bernstein localization and a derived version of the more recent microlocalization theorems of Gordon–Stafford (Gordon and Stafford in Adv Math 198(1):222–274, 2005; Duke Math J 132(1):73–135, 2006) and Kashiwara–Rouquier (Kashiwara and Rouquier in Duke Math J 144(3):525–573, 2008) as special cases. We also deduce a new derived microlocalization result linking cyclotomic rational Cherednik algebras with quantized Hilbert schemes of points on minimal resolutions of cyclic quotient singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The statement of Theorem 1.1 itself is partly inspired by [44].

  2. Later, when doing quantum Hamiltonian reduction, we will choose a Lie algebra character \(c:{\mathfrak {g}}\rightarrow \mathbf{C}\); these choices need not be related.

References

  1. Asensio, M., Van den Bergh, M., Van Oystaeyen, F.: A new algebraic approach to microlocalization of filtered rings. Trans. Am. Math. Soc. 316(2), 537–553 (1989)

    Article  MATH  Google Scholar 

  2. Beauville, A.: Symplectic singularities. Invent. Math. 139(3), 541–549 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beilinson, A., Bernstein, J.: A proof of Jantzen conjectures, I.M. Gel’fand Seminar, 1–50, Adv. Soviet Math., vol. 16, Part 1, Am. Math. Soc., Providence, RI (1993)

  4. Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigensheaves. Available at http://www.math.uchicago.edu/~mitya

  5. Beilinson, A., Ginzburg, V.: Wall-crossing functors and \({\cal D}\)-modules. Represent. Theory 3(1), 1–31 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bellamy, G., Kuwabara, T.: On deformation quantizations of hypertoric varieties. arXiv:1005.4645

  7. Ben-Zvi, D., Nadler, D.: The character theory of a complex group. arXiv:0904.1247

  8. Bernstein, J., Lunts, V.: Localization for derived categories of (\({\mathfrak{g}}\), K)-modules. J. Am. Math. Soc. 8(4), 819–856 (1995)

    MATH  MathSciNet  Google Scholar 

  9. Bezrukavnikov, R., Kaledin, D.: Fedosov quantization in the algebraic context. Moscow Math. J. 4(3), 559–592 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Bezrukavnikov, R., Mirkovic, I., Rumynin, D.: Localization of modules for a semisimple Lie algebra in prime characteristic. Ann. Math. (2) 167(3), 945–991 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Björk, J.-E.: Rings of Differential Operators. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  12. Björk, J.-E.: The Auslander condition on Noetherian rings, in Séminaire d’Algèbre Dubreil-Malliavin. Lecture Notes in Mathematics, vol. 1404, pp. 137–173, Springer, New York (1989)

  13. Bökstedt, M., Neeman, A.: Homotopy limits in triangulated categories. Compos. Math. 86(2), 209–234 (1993)

    MATH  Google Scholar 

  14. Braden, T., Licata, A., Proudfoot, N., Webster, B.: Hypertoric category \({\cal O}\). arXiv:1010.2001

  15. Braden, T., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions I: local and global, structure. arXiv:1208.3863

  16. Bridgeland, T.: Equivalences of triangulated categories and Fourier-Mukai transforms. Bull. Lond. Math. Soc. 31, 25–34 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Crawley-Boevey, W.: Geometry of the moment map for representations of quivers. Compos. Math. 126(3), 257–293 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Drinfeld, D.G.: DG quotients of DG categories. J. Algebra 272(2), 643–691 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dunkl, C., Griffeth, S.: Generalized Jack polynomials and the representation theory of rational Cherednik algebras. Selecta Math. (N.S.) 16, 791–818 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ekström, E.: The Auslander condition on graded and filtered Noetherian rings. Séminaire d’Algèbre Dubreil-Malliavin, Lecture Notes in Mathematics, vol. 1404, pp. 220–245. Springer, New York (1989)

  21. Etingof, P.: Cherednik and Hecke algebras of varieties with a finite group action. arXiv:math/0406499

  22. Etingof, P.: Symplectic reflection algebras and affine Lie algebras, preprint. arXiv:1011.45884

  23. Etingof, P., Gan, W.-L., Ginzburg, V., Oblomkov, A.: Harish-Chandra homomorphisms and symplectic reflection algebras for wreath products. Publ. Math. Inst. Hautes Études Sci. 105, 91–155 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147(2), 243–348 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Finkelberg, M., Ginzburg, V.: Cherednik Algebras for Algebraic Curves. Representation Theory of Algebraic Groups and Quantum Groups, pp. 121–153. Birkhäuser/Springer, New York (2010)

  26. Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323–448 (1962)

    MATH  MathSciNet  Google Scholar 

  27. Gan, W.L., Ginzburg, V.: Almost-commuting variety, \({\cal D}\)-modules, and Cherednik algebras, With an appendix by Ginzburg, IMRP, Int. Math. Res. Pap. 1–54 doi:10.1155/IMRP/12006/26439 (2006)

  28. Gordon, I., Losev, I.: On category \({\cal O}\) for cyclotomic rational Cherednik algebras. arXiv:1109.2315

  29. Gordon, I., Stafford, J.T.: Rational Cherednik algebras and Hilbert schemes. Adv. Math. 198(1), 222–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gordon, I., Stafford, J.T.: Rational Cherednik algebras and Hilbert schemes II: representations and sheaves. Duke Math. J. 132(1), 73–135 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Gordon, I.: A remark on rational Cherednik algebras and differential operators on the cyclic quiver. Glasg. Math. J. 48(1), 145–160 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gordon, I.: Quiver varieties, category \({\cal O}\) for rational Cherednik algebras, and Hecke algebras, Int. Math. Res. Pap. 2008, Art. ID rpn006, 69 p. doi:10.1093/imrp/rpn006 (2008)

  33. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  34. Holland, M.: Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers. Ann. Sci. École Norm. Sup. (4) 32(6), 813–834 (1999)

    MATH  MathSciNet  Google Scholar 

  35. Hotta, R., Takeuchi, K., Tanisaki, T.: \({\cal D}\)-Modules, Perverse Sheaves, and Representation Theory. Birkhaüser, Basel (2008)

  36. Hu, Y., Keel, S.: Mori dream spaces and GIT. Mich. Math. J. 48(1), 331–348 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kashiwara, M.: \({\cal D}\)-Modules and Microlocal Calculus. In: Translations of Mathematical Monographs, Iwanami Series in Modern Mathematics, vol. 217, pp. xvi+254. American Mathematical Society, Providence (2003)

  38. Kashiwara, M.: Equivariant derived category and representation of real semisimple Lie groups. In: Casadio Tarabusi, E., D’Agnolo, A., Picardello, M. (eds.) Representation Theory and Complex Analysis. Lectures from the C.I.M.E. Summer School held in Venice, June 10–17, 2004. Lecture Notes in Mathematics, vol. 1931, pp. 137–234. Springer, Berlin (2008)

  39. Kashiwara, M., Rouquier, R.: Microlocalization of rational Cherednik algebras. Duke Math. J. 144(3), 525–573 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kashiwara, M., Schapira, P.: Categories and Sheaves. Springer, Berlin (2006)

    MATH  Google Scholar 

  41. King, A.: Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxf. Ser. (2) 45, 515–530 (1994)

    Article  MATH  Google Scholar 

  42. Li, H., van Oystaeyen, F.: Zariskian filtrations. Commun. Alg. 17(12), 2945–2970 (1989)

    Article  MATH  Google Scholar 

  43. Li, H., van Oystaeyen, F.: Zariskian Filtrations. Kluwer, Dordrecht (1996)

    MATH  Google Scholar 

  44. Lipman, J., Neeman, A.: Quasi-perfect scheme-maps and boundedness of the twisted inverse image functor. Ill. J. Math. 51(1), 209–236 (2007)

    MATH  MathSciNet  Google Scholar 

  45. Lurie, J.: Derived algebraic geometry II: noncommutative algebra. arXiv:math/0702299

  46. Musson, I., Van den Bergh, M.: Invariants under tori of rings of differential operators and related topics. Mem. Am. Math. Soc. 136(650), viii +85 (1998)

  47. Neeman, A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J. Am. Math. Soc. 9(1), 205–236 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  48. Oblomkov, A.: Deformed Harish-Chandra homomorphism for the cyclic quiver. Math. Res. Lett. 14(3), 359–372 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Popescu, N.: Abelian categories with applications to rings and modules. Academic Press, New York (1973)

    MATH  Google Scholar 

  50. Rouquier, R.: \(q\)-Schur algebras and complex reflection groups. Moscow Math. J., 8(1), 119–158

  51. Schwarz, G.: Lifting differential operators from orbit spaces. Ann. Sci. École Norm. Sup. (4) 28(3), 253–305 (1995)

    MATH  Google Scholar 

  52. Schwede, S., Shipley, B.: Stable model categories are categories of modules. Topology 42(1), 103–153 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  53. Teleman, C.: The quantization conjecture revisited. Ann. Math. (2) 152(1), 1–43 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. Van den Bergh, M.: Some generalities on \(G\)-equivariant quasicoherent \({\cal O}_X\) and \({\cal D}_X\)-modules. http://hardy.uhasselt.be/personal/vdbergh/Publications/Geq.ps

  55. Van Oystaeyen, F., Willaert, L.: Grothendieck topology, coherent sheaves, and Serre’s theorem for schematic algebras. J. Pure Appl. Algebra 104, 109–122 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  56. Van Oystaeyen, F., Willaert, L.: Cohomology of schematic algebras. J. Algebra 185, 74–84 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  57. Weibel, C.: An Introduction to Homological Algebra. Cambridge UP, Cambridge (1994)

    Book  MATH  Google Scholar 

  58. Yekutieli, A., Zhang, J.: Rings with Auslander dualizing complexes. J. Algebra 213(1), 1–51 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  59. Yekutieli, A., Zhang, J.: Dualizing complexes and perverse modules over differential algebras. Compos. Math. 141(3), 620–654 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are indebted to David Ben-Zvi for extensive conversations, and for patiently answering numerous questions about compactly generated categories; and to Toby Stafford for teaching them about noncommutative Čech complexes. The authors are grateful to Gwyn Bellamy, Will Donovan, Iain Gordon, Ivan Losev, Travis Schedler, Susan Sierra, Ben Webster and Michael Wemyss for very helpful comments and suggestions. The first author was supported by a Royal Society research fellowship. The second author was supported by NSF grant DMS-0757987, NSA grant H98230-12-1-0216 and NSF grant DMS-1159468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin McGerty.

Appendix: Čech Complexes

Appendix: Čech Complexes

In this section, we lay out the basics of the Čech complex for microlocalizations of \({\mathsf {A}}\). The story is essentially standard (cf. [55, 56] for the basics), but we do not know a reference that does everything we need in the form we need. As elsewhere in the paper, we assume that \(G\) is a connected reductive group.

1.1 Modules and microlocalization

Let \(S\subset \mathbf{C}[{\mathsf {W}}]\) be a subset of nonzero homogeneous elements (recall that \(\mathbf{C}[{\mathsf {W}}]\) is graded via its identification with \(\mathrm{gr }\,{\mathsf {A}}\)). We let \(\overline{S}\) denote the smallest multiplicatively closed subset \(\overline{S}\) of \(\mathbf{C}[{\mathsf {W}}]\) containing \(S\), and let \(\overline{S}_{\mathrm{sat }}\) denote any multiplicatively closed subset of \({\mathsf {A}}\) whose collection of principal symbols is exactly \(\overline{S}\) (later we will make a specific such choice). We also let \(\widetilde{S}\) denote the subset consisting of elements of \(\overline{S}_{\mathrm{sat }}\) identified with homogeneous elements of the Rees algebra \({\mathcal {R}}= {\mathcal {R}}({\mathsf {A}})\).

Let \(\widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})\) denote the microlocalization of \({\mathcal {R}}({\mathsf {A}})\) at \(\widetilde{S}\) as defined in [1], and let \(Q^\mu _S({\mathsf {A}})\) denote the microlocalization of \({\mathsf {A}}\). More precisely, \(\widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})\) is a graded algebra over \(\mathbf{C}[t]\) for which \(\widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})/(t-1) = Q^\mu _S({\mathsf {A}})\). We next record a few basic properties of these algebras from [1]:

Lemma 7.1

  1. (1)

    For every \(a\ne 0, Q^\mu _S({\mathsf {A}}) \cong \widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})/(t-a)\).

  2. (2)

    The algebra \(Q^\mu _S({\mathsf {A}})\) comes equipped with a homomorphism \({\mathsf {A}}\rightarrow Q^\mu _S({\mathsf {A}})\) that makes \(Q^\mu _S({\mathsf {A}})\) flat over \({\mathsf {A}}\) on both sides. Similarly, there is a natural graded homomorphism \({\mathcal {R}}\rightarrow \widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})\) making \(\widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})\) flat over \({\mathcal {R}}\) on both sides.

  3. (3)

    All elements \(s\in {\mathsf {A}}\) whose symbol lies in \(\overline{S}\) become invertible in \(Q^\mu _S({\mathsf {A}})\).

  4. (4)

    \(Q^\mu _S({\mathsf {A}})\) comes equipped with a filtration \(F_\bullet \) for which \(F_k(Q^\mu _S({\mathsf {A}})) \cap {\mathsf {A}}= {\mathsf {A}}^k\). Moreover, \(\mathrm{gr }_F(Q^\mu _S({\mathsf {A}})) \cong \overline{S}^{-1}\mathbf{C}[{\mathsf {W}}]\cong \widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})/(t)\).

  5. (5)

    If \(M\) is an \({\mathsf {A}}\)-module equipped with a good filtration, then \(Q^\mu _S({\mathsf {A}})\otimes _{{\mathsf {A}}} M\) is naturally a filtered \(Q^\mu _S({\mathsf {A}})\)-module with associated graded isomorphic to \(\overline{S}^{-1}\mathrm{gr }(M)\).

  6. (6)

    If \(M\) is a finitely generated graded \({\mathcal {R}}({\mathsf {A}})\)-module, then \(\widetilde{Q}^\mu _{\widetilde{S}}(M): = \widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})\otimes _{{\mathcal {R}}({\mathsf {A}})} M\) is naturally a graded \(\widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})\)-module with \(\widetilde{Q}^\mu _{\widetilde{S}}(M)/t\widetilde{Q}^\mu _{\widetilde{S}}(M) \cong \overline{S}^{-1}(M/tM)\).

  7. (7)

    If \(M\) is a filtered \({\mathsf {A}}\)-module with Rees module \(\widetilde{M}\), then for \(a\ne 0, \widetilde{Q}^\mu _{\widetilde{S}}(\widetilde{M})/(t-a)\cong Q_S^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} M\).

Define \(\mathrm{Ind }_{\mathsf {A}}^{Q_S^\mu ({\mathsf {A}})}(M) = Q_S({\mathsf {A}})\otimes _{{\mathsf {A}}} M\). One has an adjoint pair of functors:

$$\begin{aligned} \mathrm{Ind }_{\mathsf {A}}^{Q_S({\mathsf {A}})} = Q_S({\mathsf {A}})\otimes _{{\mathsf {A}}} - : {\mathsf {A}}-\mathrm{mod } \leftrightarrows Q_S({\mathsf {A}})-\mathrm{mod }: \mathrm{Res }_{{\mathsf {A}}}^{Q_S({\mathsf {A}})}, \end{aligned}$$

where \(\mathrm{Res }_{{\mathsf {A}}}^{Q_S({\mathsf {A}})}\) is the usual restriction functor. One gets a similar adjoint pair for graded \({\mathcal {R}}\)-modules.

Lemma 7.2

We have

$$\begin{aligned} \mathrm{Ker }\big (\mathrm{Ind }_{\mathsf {A}}^{Q_S({\mathsf {A}})}\big )&= \Big \{ M \; \Big |\; SS(M) \subset \bigcup _{s\in S} V(s)\Big \}, \\ \mathrm{Ker }\big (\mathrm{Ind }_{\mathcal {R}}^{\widetilde{S}^{-1}({\mathcal {R}})}\big )&= \Big \{ M \; \Big |\; SS(M) \subset \bigcup _{s\in S} V(s)\Big \}. \end{aligned}$$

Proof

The equalities of the lemma are immediate from Lemma 7.1(5) for finitely generated modules, and follow for all modules by writing arbitrary modules as colimits of finitely generated ones. \(\square \)

1.2 Equivariant microlocal modules

Suppose that the connected reductive complex group \(G\) acts on \({\mathsf {W}}\), that \(\chi : G\rightarrow {\mathbb {G}}_m\) is a choice of character and that \(S\) is a set of homogeneous (for the grading on \(\mathbf{C}[{\mathsf {W}}]\) induced from \(\mathrm{gr }\,{\mathsf {A}}\)) \(\chi ^{\mathbb {N}}\)-semi-invariants (i.e., consists of elements \(s\) each of which is \(\chi ^{\ell (s)}\)-semi-invariant for some \(\ell (s)>0\)). Then, \(\overline{S}\) consists of \(\chi ^{\mathbb {N}}\)-semi-invariants, together with \(1\), and we choose \(\overline{S}_{\mathrm{sat }}\) to consist of \(1\) together with all \(\chi ^{\mathbb {N}}\)-semi-invariants in \({\mathsf {A}}\) whose principal symbols lie in \(\overline{S}\); this is a multiplicatively closed subset of \({\mathsf {A}}\). Note that then the \(G\)-action preserves the set of elements of \(S, \overline{S}\) and \(\overline{S}_{\mathrm{sat }}\) up to scalars; as a result, \(G\) acts naturally on \(Q_S^\mu ({\mathsf {A}})\) and \(\widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})\).

Recall that a vector \(v\) in a \(G\)-representation \(V\) is \(G\) -rational (or simply rational if the group is understood) if there is a finite-dimensional rational \(G\)-subrepresentation \(W\subseteq V\) with \(v\in W\). Given a \(G\)-representation \(V\), we let \(V^{\mathrm{rat }}\) denote the subspace of \(G\)-rational vectors: it is a \(G\)-subrepresentation of \(V\). For the following Lemma, it is convenient to note that a vector \(v \in V\) is \(G\)-rational precisely if it lies in the image of a \(G\)-homomorphism \(\rho :U \rightarrow V\) from a finite-dimensional rational \(G\)-representation \(U\).

Lemma 7.3

If \(V\) is a rational \(G\)-representation and \(M\) is any \(G\)-representation, then \((M\otimes _{\mathbf{C}} V\big )^{\mathrm{rat }} = M^{\mathrm{rat }}\otimes _{\mathbf{C}} V\).

Proof

Since tensor products commute with colimits, we may assume that \(V\) is finite-dimensional. If \(u \in M\otimes V\) is a \(G\)-rational vector, pick a \(G\)-equivariant map \(\rho :W \rightarrow M\otimes V\) from a finite-dimensional rational \(G\)-representation \(W\) whose image contains \(u\). We have a canonical morphism:

$$\begin{aligned} \Theta :\text {Hom}(W,M\otimes V) \rightarrow \text {Hom}(W\otimes V^{*},M), \end{aligned}$$

where if \(f:W \rightarrow M\otimes V\), the linear map \(\Theta (f)\) on \(W\otimes V^{*}\) is given by the bilinear map \((w,\phi ) \mapsto (1\otimes \phi )(f(w))\), (\(w \in W, \phi \in V^{*})\). The map \(\Theta \) is evidently \(G\)-equivariant and hence the map \(\Theta (\rho )\) is also. Thus to see that \(u\) lies in \(M^\mathrm{rat}\otimes V\), it suffices to note that \(u\) lies in \(\Theta (\rho )(W\otimes V^{*})\otimes V\), which is clear for example by writing the map \(\rho \) in terms of a basis for \(V\) and \(W\). But it is clear that \(M^{\mathrm{rat }}\otimes V \subseteq (M\otimes V)^{\mathrm{rat }}\) and hence the Lemma follows. \(\square \)

We write \(\left( \widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}}), G\right) -\mathrm{Mod }\) for the category of weakly \(G\)-equivariant \(\widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}})\)-modules.

Write \(Z(S)\subset {\mathsf {W}}\) for the hypersurface defined as the union of hypersurfaces \(V(s_i)\) for \(s_i\in S\). Note that \(Z(S)\) is the complementary closed subset to the open immersion \(\mathrm{Spec }(\overline{S}^{-1}\mathbf{C}[{\mathsf {W}}])\hookrightarrow \mathrm{Spec }(\mathbf{C}[{\mathsf {W}}])\). By construction, \(Z(S)\) is \(G\)-stable. Given a Lie algebra character \(c:{\mathfrak {g}}\rightarrow \mathbf{C}\), let \(({\mathsf {A}}, G, c)-\mathrm{mod }_{Z(S)}\) denote the localizing subcategory of \(({\mathsf {A}}, G, c)-\mathrm{mod }\) whose objects are modules \(M\) with \(SS(M)\subseteq Z(S)\) (cf. Sect. 4.3).

Proposition 7.4

  1. (1)

    An object \(M\) of \(({\mathsf {A}}, G, c)-\mathrm{mod }\) lies in \(({\mathsf {A}}, G, c)-\mathrm{mod }_{Z(S)}\) if and only if \(\mathrm{Ind }_{\mathsf {A}}^{Q_S^\mu ({\mathsf {A}})}(M) = 0\).

  2. (2)

    The functor \(\mathrm{Ind }_{\mathsf {A}}^{Q_S^\mu ({\mathsf {A}})}: ({\mathsf {A}}, G, c)-\mathrm{mod } \longrightarrow \big (\widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}}), G\big )-\mathrm{Mod }\) factors uniquely through the quotient category \(({\mathsf {A}}, G, c)-\mathrm{mod }\!/\!({\mathsf {A}}, G, c)-\mathrm{mod }_{Z(S)}\), and the induced functor

    $$\begin{aligned} ({\mathsf {A}}, G, c)-\mathrm{mod }/({\mathsf {A}}, G, c)-\mathrm{mod }_{Z(S)}\longrightarrow \big (\widetilde{Q}^\mu _{\widetilde{S}}({\mathsf {A}}), G\big )-\mathrm{Mod } \end{aligned}$$

    is faithful.

  3. (3)

    The quotient functor \( \pi _S: ({\mathsf {A}}, G, c)-\mathrm{mod }\longrightarrow ({\mathsf {A}}, G, c)-\mathrm{mod }/({\mathsf {A}}, G, c)-\mathrm{mod }_{Z(S)}\) has right adjoint \(\Gamma _S\) defined by \(\Gamma _S\big (\pi _S(M)\big ) = (Q_S^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} M)^{\mathrm{rat }}.\) Moreover, the right adjoint \(\Gamma _S\) is exact.

Moreover, analogous statements hold for \((G,c)\)-equivariant graded \({\mathcal {R}}({\mathsf {A}})\)-modules.

Proof

(1) follows from Lemma 7.2. (2) is immediate from the universal property of the quotient category.

To prove (3), we begin by recalling that the right adjoint \(\Gamma _S\) applied to \(\pi _S(M)\) is constructed as the colimit over maps \(M\rightarrow M'\) whose kernel and cokernel have singular support in \(Z(S)\). If \(\tau (M)\) is the maximal submodule with singular support in \(Z(S)\), then \(\Gamma _S(\pi _S(M))= \Gamma _S(\pi _S(M/\tau (M)))\); in particular, we may assume that \(\tau (M) = 0\). In this case, \(\Gamma _S(\pi _S(M))\) is determined by being maximal among all extensions of \(M\) whose cokernel has singular support in \(Z(S)\) and that contain no nonzero submodule with singular support in \(Z(S)\). Consider the natural injective map \(\iota : M\rightarrow (Q_S^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} M)^{\mathrm{rat }}\). If \(M\) is finitely generated over \({\mathsf {A}}\), then Lemma 7.1(5) implies that \(SS(\mathrm{coker }(\iota ))\subseteq Z(S)\); since the target of \(\iota \) commutes with colimits in \(M\), the same inclusion of singular support holds for arbitrary \(M\). Now suppose \(f: M\rightarrow M'\) is any map in \(({\mathsf {A}}, G,c)-\mathrm{mod }\) whose cokernel has singular support in \(Z(S)\). Then, the natural map \(Q_S^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} M\rightarrow Q_S^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} M'\) is an isomorphism, so the same is true after passing to rational vectors. We thus obtain a map \(g: M'\rightarrow (Q_S^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} M)^{\mathrm{rat }}\) so that \(g\circ f = \iota \). Passing to the colimit over such \(M'\), we immediately obtain a map \(\Gamma _S(\pi _S(M))\rightarrow (Q_S^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} M)^{\mathrm{rat }}\). Since neither domain nor target has a submodule with singular support in \(Z(S)\), the universal property of \(\Gamma _S\) implies that this map is an isomorphism.

To prove the exactness claim of (3), observe that \(\mathrm{Ind }_{\mathsf {A}}^{Q_S^\mu ({\mathsf {A}})}\) is exact. Hence, it suffices to prove that \((-)^{\mathrm{rat }}\) is exact on the image of \(\mathrm{Ind }_{\mathsf {A}}^{Q_S^\mu ({\mathsf {A}})}\). Left exactness is clear. To check right exactness, we may assume that \(M\) and \(N\) are finitely generated \({\mathsf {A}}\)-modules and that \(M\rightarrow N\) is surjective; moreover, it suffices to check for a surjective map \({\mathcal {R}}(M)\rightarrow {\mathcal {R}}(N)\) corresponding to good filtrations of \(M\) and \(N\). Now, by the construction of [1], the map \(\widetilde{Q}_{\widetilde{S}}^\mu ({\mathsf {A}})\otimes {\mathcal {R}}(M)\rightarrow \widetilde{Q}_{\widetilde{S}}^\mu ({\mathsf {A}})\otimes {\mathcal {R}}(N)\) is the limit of localizations of the maps \({\mathcal {R}}(M)/t^k{\mathcal {R}}(M)\longrightarrow {\mathcal {R}}(N)/t^k{\mathcal {R}}(N)\), which are surjective maps of rational \(G\)-modules by construction; for simplicity, write \(M_k\rightarrow N_k\) for the maps of localized modules. A vector \(v \in \widetilde{Q}_{\widetilde{S}}^\mu ({\mathsf {A}})\otimes {\mathcal {R}}(N)\) is a rational vector if and only if there are a finite-dimensional rational \(G\)-module \(V\) and vector \(\widetilde{v}\in V\) and a compatible sequence of \(G\)-maps \(V\rightarrow N_k\) for all \(k\) such that the image of \(\widetilde{v}\) corresponds to \(v\) in the inverse limit. Since \(G\) is reductive and the maps \(M_{k+1}\rightarrow M_k\) and \(M_k \rightarrow N_k\) are all surjective maps of rational \(G\)-modules, given such a sequence we can find a compatible sequence of \(G\)-equivariant lifts \(V\rightarrow M_k\) whose composites to \(N_k\) agree with the given maps, and such that the images of \(\widetilde{v}\) in the \(M_k\) form a compatible sequence of vectors. Hence, in the limit, we get a lift of \(v\) to a rational vector in \(\displaystyle \lim \limits _\leftarrow {M}_{k} = \widetilde{Q}_{\widetilde{S}}^\mu ({\mathsf {A}})\otimes {\mathcal {R}}(M)\) (here, we use that \({\mathcal {R}}(M)\) is finitely generated; otherwise, the microlocalization may not equal the tensor product). \(\square \)

Corollary 7.5

Suppose that the set \(S\) as above satisfies \(\displaystyle {\mathsf {W}}^\mathrm{uns} \subseteq \bigcup \nolimits _{s\in S} V(s)\) (where instability is taken with respect to \(\chi \)). Then the functors \(\pi _S\) factor canonically

through exact functors \(j_S^{*}\).

Note that here (and elsewhere in this section) \({\mathcal {R}}-\mathrm{mod }\) denotes the category of graded \({\mathcal {R}}\)-modules (and similarly for the equivariant categories).

1.3 Adjoints

Proposition 7.6

The functors \(j_S^{*}\) of Corollary have right adjoints. More precisely,

  1. (1)

    the adjoints \(j_{S*}\) are given by \(j_{S*}M = \pi _c\circ \Gamma _S(M).\)

  2. (2)

    Each \(j_{S*}\) is exact.

Proof

Note that if an adjoint exists, then \(\Gamma _c\circ j_{S*} = \Gamma _S\) by uniqueness of adjoints, and so \(j_{S*} = \pi _c\circ \Gamma _c\circ j_{S*} = \pi _c\circ \Gamma _S\); and similarly for \({\mathcal {R}}\).

We give the proof only for \({\mathsf {A}}\); the proof for \({\mathcal {R}}\) is similar. We will show that the given formula defines a right adjoint. \(\square \)

We begin by proving:

Lemma 7.7

If \(\widetilde{N} = \Gamma _S\pi _S(N)\), where \(N\) is a \((G,c)\)-equivariant \({\mathsf {A}}\)-module, then \(\Gamma _c\circ \pi _c(\widetilde{N}) = \widetilde{N}\). Similar statements hold for weakly equivariant and non-equivariant modules.

Proof

Since \(\pi _S\) is a localization functor, we have \(\pi _S\circ \Gamma _S = \mathrm{Id }\). It follows that \(\Gamma _S\circ \pi _S(\widetilde{N}) = \widetilde{N}\). Now suppose that \(f: \widetilde{N} \rightarrow N'\) is any map whose kernel and cokernel have unstable singular support. Then \(\pi _S(\widetilde{N})\rightarrow \pi _S(N')\) becomes an isomorphism, and so adjunction defines a map \(g: N'\rightarrow \Gamma _S\circ \pi _S(\widetilde{N}) = \widetilde{N}\) so that \(g\circ f\) is the identity. Now \(\Gamma _c\circ \pi _c(\widetilde{N})\) is the colimit over such maps \(f\), and since split maps do not contribute to the colimit, the conclusion follows. \(\square \)

Returning to the proof of the proposition, we thus have

$$\begin{aligned} {\mathrm{Hom }}_{\mathcal {E}_{{\mathfrak {X}}}(c)}\big (\pi _c M, \pi _c\Gamma _S(\pi _S(N))\big )&= {\mathrm{Hom }}_{({\mathsf {A}}, G, c)}\big (M, \Gamma _c\pi _c\Gamma _S\pi _S(N)\big )\\&= {\mathrm{Hom }}_{({\mathsf {A}},G,c)}\big (M, \Gamma _S\pi _S(N)\big ) \;\; \text {by Lemma 7.7} \\&= \mathrm{Hom }\big (\pi _S(M),\pi _S(N)\big )\\&= \mathrm{Hom }\big (j_S^{*} \pi _c(M),\pi _S(N)\big ). \end{aligned}$$

Since \(\pi _c\) and \(\pi _S\) are essentially surjective, this proves (1). The exactness statement (2) is immediate from (1) by Proposition 7.4(3). This completes the proof of Proposition 7.6.

Proposition 7.8

Let \(M = j_{S*} \pi _S(N)\) where \(N\) is a twisted equivariant \({\mathsf {A}}\)-module or \({\mathcal {R}}\)-module. Then

$$\begin{aligned} {\mathbb {R}}\Gamma _c(M) \cong (Q_S^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} N)^{\mathrm{rat }}, \text { respectively } {\mathbb {R}}\Gamma _c(M) \cong (\widetilde{Q}_{\widetilde{S}}^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} N)^{\mathrm{rat }}. \end{aligned}$$

Proof

Since \(j_{S*}\) and \(\pi _S\) are exact, we have

$$\begin{aligned} ({\mathbb {R}}\Gamma _c)\circ (j_{S*}\pi _S) = {\mathbb {R}}(\Gamma _c\circ j_{S*}\circ \pi _S) = {\mathbb {R}}(\Gamma _c\pi _c\Gamma _S\pi _S). \end{aligned}$$

But Lemma 7.7 implies that \(\Gamma _c\pi _c\Gamma _S\pi _S = \Gamma _S\pi _S\), and the latter is exact by Proposition 7.4, so we get \(({\mathbb {R}}\Gamma _c)\circ (j_{S*}\pi _S) = \Gamma _S\pi _S\), as required. \(\square \)

1.4 Čech complex

Choose a finite collection \(\{f_i \; |\; 0\le i\le n\}\) of nonzero homogeneous \(G\)-semi-invariants, so that \(\displaystyle \bigcup \nolimits _{i=0}^n D(f_i) = {\mathsf {W}}^{ss}\). For each nonempty subset \(I\subseteq \{0,\ldots ,n\}\) we let \(S_I = \{f_i\; | \; i\in I\}\). For any weakly \(G\)-equivariant \({\mathsf {A}}\)-module \(M\), we get

$$\begin{aligned} M_I \overset{\mathrm{def }}{=} \Gamma _{S_I}\pi _{S_I}(M) = \big (Q_{S_I}^{\mu }({\mathsf {A}})\otimes _{\mathsf {A}}M\big )^{\mathrm{rat }}. \end{aligned}$$

Given \(I\subseteq J\subseteq \{0,\ldots ,n\}\), we get a map \(M_I\rightarrow M_J\) induced by the natural map \(Q_{S_I}^\mu ({\mathsf {A}})\rightarrow Q_{S_J}^\mu ({\mathsf {A}})\). We form the Čech complex \(\check{C}^\bullet (M)\) with

$$\begin{aligned} \check{C}^k(M) = \prod _{|I| = k+1} M_I, \end{aligned}$$

and differentials defined as in [33, Section III.4]. If \(M\) lies in \(({\mathsf {A}},G,c)-\mathrm{mod }\), then \(\check{C}^\bullet (M)\) is a complex in the same category. We make analogous definitions for graded \({\mathcal {R}}\)-modules \(M\) using \(\widetilde{Q}_{\widetilde{S}_I}^\mu ({\mathsf {A}})\) in place of \(Q^\mu _{S_I}({\mathsf {A}})\) and let \(\check{C}^\bullet (M)\) denote the corresponding Čech complex.

Proposition 7.9

For a \(G\)-invariant left ideal \(I\subseteq {\mathsf {A}}, \check{C}^\bullet ({\mathsf {A}}/I) \cong \check{C}^\bullet ({\mathsf {A}})\otimes _{{\mathsf {A}}} ({\mathsf {A}}/I)\).

Proof

Picking generators of the ideal \(I\) and using the fact that \({\mathsf {A}}\) is a rational \(G\)-representation, we may find a finite-dimensional rational representation \(V\) of \(G\) and an equivariant exact sequence \({\mathsf {A}}\otimes _{\mathbf{C}} V \rightarrow {\mathsf {A}}\rightarrow {\mathsf {A}}/I\rightarrow 0\). Tensoring with \(Q_S^\mu ({\mathsf {A}})\) over \({\mathsf {A}}\) and applying \((-)^{\mathrm{rat }}\) for any \(S\) gives an exact sequence (Proposition 7.4) \(\big (Q_S^\mu ({\mathsf {A}})\otimes _{\mathbf{C}} V\big )^{\mathrm{rat }} \rightarrow Q_S^\mu ({\mathsf {A}})^{\mathrm{rat }} \rightarrow \big (Q_S^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} {\mathsf {A}}/I\big )^{\mathrm{rat }}\rightarrow 0\). Now by Lemma 7.3, the first term of the sequence is just \(Q_S^\mu ({\mathsf {A}})^{\mathrm{rat }}\otimes _{\mathbf{C}} V\), and hence its image in \(Q_S^\mu (A)^{\mathrm{rat }}\) is \(Q_S^\mu (A)^{\mathrm{rat }}I\). It follows that

$$\begin{aligned} (Q_S^\mu ({\mathsf {A}})\otimes _{{\mathsf {A}}} {\mathsf {A}}/I)^{\mathrm{rat }} \cong Q_S^\mu ({\mathsf {A}})^{\mathrm{rat }}/Q_S^\mu (A)^{\mathrm{rat }}I \cong Q_S^\mu ({\mathsf {A}})^{\mathrm{rat }}\otimes _{{\mathsf {A}}} ({\mathsf {A}}/I). \end{aligned}$$

The result is then immediate from the definition of the Čech complex. \(\square \)

1.5 Rees modules

Suppose now that \(M\) is an \({\mathsf {A}}\)-module equipped with a good filtration. We obtain the associated Rees module \({\mathcal {R}}(M) = \oplus _k F_k(M)t^k \subseteq M[t, t^{-1}]\). This is an \({\mathcal {R}}= {\mathcal {R}}({\mathsf {A}})\)-module; it is always torsion-free, hence flat, over \(\mathbf{C}[t]\). Each microlocalization \(Q_S^\mu ({\mathsf {A}})\otimes _{\mathsf {A}}M\) comes equipped with a filtration as well. Moreover, we have the following:

Proposition 7.10

Suppose that \(M\) is an \({\mathsf {A}}\)-module with good filtration. Then:

  1. (1)

    \(\check{C}^\bullet \big ({\mathcal {R}}(M)\big )\) is a complex of torsion-free, hence flat, \(\mathbf{C}[t]\)-modules.

  2. (2)

    \(\check{C}^\bullet \big ({\mathcal {R}}(M)\big )/(t-a)\cong \check{C}^\bullet (M)\) as \({\mathcal {R}}/(t-a){\mathcal {R}}\cong {\mathsf {A}}\)-modules for every \(a\ne 0\).

  3. (3)

    \(\check{C}^\bullet \big ({\mathcal {R}}(M)\big )/(t)\cong \check{C}^\bullet (\mathrm{gr }(M))\) as \(\mathbf{C}[{\mathsf {W}}]\)-modules.

Here part (3) follows from Lemma 7.1(5).

Corollary 7.11

For any \(({\mathsf {A}}, G)\)-module \(P\) with good filtration and any \(i\), there is a natural \(G\)-equivariant isomorphism

$$\begin{aligned} \mathrm{gr }\big (H^i(\check{C}^\bullet P)\big ) \cong H^i((\check{C}^\bullet (\mathrm{gr }\, P)\big ) \end{aligned}$$

that is functorial in \(P\).

Proof

This follows from the standard fact that cohomologies of complexes of flat modules commute with base change. \(\square \)

We record the following two lemmas that will be used in Sect. 5.2.

Lemma 7.12

(Lemma III.12.3 of [33]) Let \(R\) be a noetherian ring and let \(C^\bullet \) be a bounded-above complex of left \(R\)-modules such that for each \(i, H^i(C^\bullet )\) is a finitely generated \(R\)-module. Then, there is a bounded-above complex \(L^\bullet \) of finitely generated free \(R\)-modules and a quasi-isomorphism \(g: L^\bullet \rightarrow C^\bullet \). Furthermore, if \(S\subseteq R\) is a central subring of \(R\) and all \(C^i\) are flat over \(S\), then for any \(S\)-module \(M\), the induced map \(g\otimes 1_M: L^\bullet \otimes M\rightarrow C^\bullet \otimes M\) is a quasi-isomorphism.

Lemma 7.13

Let \({\mathcal {R}}\) be a nonnegatively graded, noetherian, flat \(\mathbf{C}[t]\)-algebra (in particular, \(\mathbf{C}[t]\) is central in \({\mathcal {R}}\)). Suppose that \(M\) is a graded \({\mathcal {R}}\)-module of finite type and \(N^\bullet \) is a complex of \(\mathbf{C}[t]\)-flat graded \({\mathcal {R}}\)-modules. Then for any \(a\in \mathbf{C}\),

$$\begin{aligned} \mathbf{C}[t]/(t-a)\otimes _{\mathbf{C}[t]}\mathrm{Hom }_{{\mathcal {R}}}(M, N^\bullet ) \cong \mathrm{Hom }_{{\mathcal {R}}/(t-a){\mathcal {R}}}(M/(t-a)M, N^\bullet /(t-a)N^\bullet ). \end{aligned}$$

1.6 Calculating with the Čech complex

Theorem 7.14

For every \(M\) in \(({\mathsf {A}},G,c)-\mathrm{mod }\), respectively \(({\mathcal {R}},G,c)-\mathrm{mod }\), we have

  1. (1)

    \(\pi _c M \simeq \pi _c \check{C}^\bullet (M)\), and

  2. (2)

    \({\mathbb {R}}\Gamma _c\circ \pi _c(M)\simeq \check{C}^\bullet (M)\).

Proof

It suffices to prove (1) for finitely generated modules \(M\) since both sides commute with colimits. If \(M\) is an \({\mathsf {A}}\)-module, it can be equipped with an equivariant good filtration to give a finitely generated equivariant graded \({\mathcal {R}}\)-module \(\widetilde{M}\) for which \(\widetilde{M}/(t-1)\widetilde{M} = M\). Since the functor \(\mathbf{C}[t](t-1)\otimes -\) descends to the quotient categories and \(\mathbf{C}[t](t-1)\otimes \big (\check{C}^\bullet (\widetilde{M})\big ) \simeq \check{C}^\bullet (M)\) (by Proposition 7.10), it will suffice to show that for a finitely generated \({\mathcal {R}}\)-module \(M\), the statement of (1) holds.

Let \({\mathcal {R}}-\mathrm{mod }^\mathrm{uns}\) denote the full subcategory of objects with unstable singular support. We have a commutative diagram:

with faithful rows. To check that the canonical map \(\pi _c M \rightarrow \pi _c \check{C}^\bullet (M)\) is a quasi-isomorphism, then, it is enough to check after applying the functor \(\mathrm{incl }\), hence to check that \(\overline{\pi } M\simeq \overline{\pi } \check{C}^\bullet (M)\). Choose a finite, free graded \({\mathcal {R}}\)-module resolution \(F^\bullet \rightarrow M\). We get a map \(\overline{\pi } F^\bullet \rightarrow \overline{\pi } \check{C}^\bullet (F^\bullet )\), and if this is a quasi-isomorphism (replacing the second double complex by its totalization), then the conclusion follows for \(M\). Since both \(\overline{\pi }\) and \(\check{C}^\bullet \) commute with colimits, the quasi-isomorphism for \(F^\bullet \) reduces to the corresponding statement for \({\mathcal {R}}\) itself.

We have \(\mathbf{C}[t]/(t)\otimes _{\mathbf{C}[t]}\check{C}^\bullet ({\mathcal {R}}) \cong \check{C}^\bullet (\mathrm{gr }({\mathsf {A}}))\) and thus the associated graded of \({\mathcal {R}}\rightarrow \check{C}^\bullet ({\mathcal {R}})\) is the natural map \(\mathbf{C}[{\mathsf {W}}]\rightarrow \check{C}^\bullet (\mathbf{C}[{\mathsf {W}}])\). The target of this last map is a complex of \(\mathbf{C}[{\mathsf {W}}]\)-modules that computes \(H^\bullet ({\mathsf {W}}^{ss}, \mathcal {O})\). Since \({\mathsf {W}}\) is affine we have

$$\begin{aligned} \mathrm{supp }(H^i({\mathsf {W}}^{ss}, \mathcal {O}))\subseteq {\mathsf {W}}^\mathrm{uns} \;\;\;\; \text {for}\, i>0, \text {implying} \\ SS\big (\mathrm{Cone }[{\mathcal {R}}\rightarrow \check{C}^\bullet ({\mathcal {R}})]\big ) \subseteq {\mathsf {W}}^\mathrm{uns}. \end{aligned}$$

It follows that \(\overline{\pi }{\mathcal {R}}\xrightarrow {\simeq } \overline{\pi }\check{C}^\bullet ({\mathcal {R}})\) is a quasi-isomorphism, proving (1).

For part (2), we have: \({\mathbb {R}}\Gamma _c(\pi _c(M)) \simeq {\mathbb {R}}\Gamma _c(\pi _c\check{C}^\bullet (M))\simeq \check{C}^\bullet (M)\), where the first isomorphism comes from part (1) of the present theorem and the second isomorphism follows from Proposition 7.8 and Proposition 7.6(1). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGerty, K., Nevins, T. Derived equivalence for quantum symplectic resolutions. Sel. Math. New Ser. 20, 675–717 (2014). https://doi.org/10.1007/s00029-013-0142-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-013-0142-6

Keywords

Mathematics Subject Classification

Navigation