Skip to main content
Log in

Perturbation of analytic semigroups and applications to partial differential equations

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In a recent paper we presented a general perturbation result for generators of \(C_0\)-semigroups, c.f. Theorem 2.1 below. The aim of the present work is to replace, in case the unperturbed semigroup is analytic, the various admissibility conditions appearing in this result by simpler inclusion assumptions on the domain and the range of the perturbation. This is done in Theorem 2.4 and allows to apply our results also in situations which are only in part governed by analytic semigroups. The power of our approach to treat in a unified and systematic way wide classes of PDE’s is illustrated by a generic example, a degenerate differential operator with generalized Wentzell boundary conditions, a reaction diffusion equation with unbounded delay and a perturbed Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Adams. Sobolev Spaces, Pure and Applied Mathematics, vol. 65. Academic Press, New York–London (1975).

  2. M. Adler, M. Bombieri, and K.-J. Engel. On perturbations of generators of \(C_0\)-semigroups. Abstr. Appl. Anal. (2014), Art. ID 213020. http://dx.doi.org/10.1155/2014/213020.

  3. W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander. Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, vol. 96. Birkhäuser Verlag, Basel (2001). http://www.springer.com/birkhauser/mathematics/book/978-3-0348-0086-0.

  4. A. Bátkai and S. Piazzera. Semigroups for Delay Equations, Research Notes in Mathematics, vol. 10. A K Peters Ltd., Wellesley, MA (2005). http://www.crcpress.com/product/isbn/9781568812434.

  5. M. Campiti and G. Metafune. Ventcel’s boundary conditions and analytic semigroups. Arch. Math. (Basel) 70 (1998), 377–390. http://dx.doi.org/10.1007/s000130050210.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Casarino, K.-J. Engel, R. Nagel, and G. Nickel. A semigroup approach to boundary feedback systems. Integral Equations Operator Theory 47 (2003), 289–306. http://dx.doi.org/10.1007/s00020-002-1163-2.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Chill, V. Keyantuo, and M. Warma. Generation of cosine families on \(L^p(0,1)\) by elliptic operators with Robin boundary conditions. In: Functional analysis and evolution equations, pp. 113–130. Birkhäuser, Basel (2008). http://dx.doi.org/10.1007/978-3-7643-7794-6_7.

  8. K.-J. Engel and G. Fragnelli. Analyticity of semigroups generated by operators with generalized Wentzell boundary conditions. Adv. Differential Equations 10 (2005), 1301–1320. http://projecteuclid.org/euclid.ade/1355867753.

  9. K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer-Verlag, New York (2000). http://dx.doi.org/10.1007/b97696.

    MATH  Google Scholar 

  10. A. Favini, G. R. Goldstein, J. A. Goldstein, and S. Romanelli. General Wentzell boundary conditions, differential operators and analytic semigroups in \(C[0,1]\). Bol. Soc. Parana. Mat. (3) 20 (2002), 93–103 (2003). http://dx.doi.org/10.5269/bspm.v20i1-2.7525.

    MATH  MathSciNet  Google Scholar 

  11. D. Fujiwara. Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order. Proc. Japan Acad. 43 (1967), 82–86. http://dx.doi.org/10.3792/pja/1195521686.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Greiner. Perturbing the boundary conditions of a generator. Houston J. Math. 13 (1987), 213–229. http://dx.doi.org/10.1007/s00233-011-9361-3.

    MATH  MathSciNet  Google Scholar 

  13. G. Greiner and K. G. Kuhn. Linear and semilinear boundary conditions: the analytic case. In: Semigroup Theory and Evolution Equations (Delft, 1989), Lecture Notes in Pure and Appl. Math., vol. 135, pp. 193–211. Dekker, New York (1991).

  14. B. H. Haak, M. Haase, and P. C. Kunstmann. Perturbation, interpolation, and maximal regularity. Adv. Differential Equations 11 (2006), 201–240. http://projecteuclid.org/euclid.ade/1355867717.

  15. S. Hadd, R. Manzo, and A. Rhandi. Unbounded perturbations of the generator domain. Discrete Contin. Dyn. Syst. 35 (2015), 703–723. http://dx.doi.org/10.3934/dcds.2015.35.703.

    MATH  MathSciNet  Google Scholar 

  16. P. C. Kunstmann and L. Weis. Perturbation theorems for maximal \(L_p\)-regularity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), 415–435. http://www.numdam.org/item?id=ASNSP_2001_4_30_2_415_0.

  17. I. Lasiecka and R. Triggiani. Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations. J. Differential Equations 47 (1983), 246–272. http://dx.doi.org/10.1016/0022-0396(83)90036-0.

    Article  MathSciNet  Google Scholar 

  18. J.-L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and Applications. Vol. I. Springer-Verlag, New York-Heidelberg (1972). http://dx.doi.org/10.1007/978-3-642-65161-8. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.

  19. L. Maniar and R. Schnaubelt. Robustness of Fredholm properties of parabolic evolution equations under boundary perturbations. J. Lond. Math. Soc. (2) 77 (2008), 558–580. http://dx.doi.org/10.1112/jlms/jdn001.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Nagel. Towards a “matrix theory” for unbounded operator matrices. Math. Z. 201 (1989), 57–68. http://dx.doi.org/10.1007/BF01161994.

    Article  MATH  MathSciNet  Google Scholar 

  21. M. Reed and B. Simon. Methods of Modern Mathematical Physics II. Fourier Analysis and Self-Adjointness. Academic Press, New York (1975).

    MATH  Google Scholar 

  22. M. Renardy and R. C. Rogers. An Introduction to Partial Differential Equations, Texts in Applied Mathematics, vol. 13. Springer-Verlag, New York, 2nd edn. (2004). http://dx.doi.org/10.1007/b97427.

    MATH  Google Scholar 

  23. O. Staffans. Well-Posed Linear Systems, Encyclopedia of Mathematics and its Applications, vol. 103. Cambridge University Press, Cambridge (2005). http://dx.doi.org/10.1017/CBO9780511543197.

    Book  Google Scholar 

  24. G. Weiss. Regular linear systems with feedback. Math. Control Signals Systems 7 (1994), 23–57. http://dx.doi.org/10.1007/BF01211484.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Jochen Engel.

Additional information

Dedicated to Rainer Nagel on the occasion of his 75th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adler, M., Bombieri, M. & Engel, KJ. Perturbation of analytic semigroups and applications to partial differential equations. J. Evol. Equ. 17, 1183–1208 (2017). https://doi.org/10.1007/s00028-016-0377-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-016-0377-8

Mathematics Subject Classification

Keywords

Navigation