Skip to main content
Log in

Global wellposedness for a class of reaction–advection–anisotropic-diffusion systems

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We prove existence and uniqueness of global solutions for a class of reaction–advection– anisotropic-diffusion systems whose reaction terms have a “triangular structure”. We thus extend previous results to the case of time–space-dependent anisotropic diffusions and with time–space-dependent advection terms. The corresponding models are in particular relevant for transport processes inside porous media and in situations in which additional migration occurs. The proofs are based on optimal \({L^p}\)-maximal regularity results for the general time-dependent linear operator dual to the one involved in the considered systems. As an application, we prove global wellposedness for a prototypical class of chemically reacting systems with mass-action kinetics, involving networks of reactions of the type \({C_{1} + \cdots + C_{P-1} \rightleftharpoons C_{P}}\). Finally, we analyze how a classical a priori \({L^2}\)-estimate of the solutions, which holds with this kind of nonlinear reactive terms, extends to our general anisotropic-advection framework. It does extend with the same assumptions for isotropic diffusions and is replaced by an \({L^{(N+1)/N}}\)-estimate in the general situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amann H.: Dynamic theory of quasilinear parabolic systems. III. Global existence. Math. Z., 202(2), 219–250 (1989)

    MathSciNet  MATH  Google Scholar 

  2. H. Amann. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992), volume 133 of Teubner-Texte Math., pages 9–126. Teubner, Stuttgart, 1993.

  3. D. Bothe. On the Maxwell-Stefan approach to multicomponent diffusion. In Progress in Nonlinear Differential Equations and their Applications, pages 81–93. Springer, Basel, 2011.

  4. D. Bothe and W. Dreyer. Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mechanica, pages 1757–1805, 2015.

  5. Bothe D., Fischer A., Pierre M., Rolland G.: Global existence for diffusion-electromigration systems in space dimension three and higher. Nonlinear Analysis A: Theory Methods and Applications, 99, 152–166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bothe D., Pierre M., Rolland G.: Cross-diffusion limit for a reaction–diffusion system with fast reversible reaction. Comm. in P.D.E, 37, 1940–1966 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bothe D., Rolland G.: Global existence for a class of reaction–diffusion systems with mass action kinetics and concentration-dependent diffusivities. Acta Appl. Math., 139(1), 25– (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Brezis. Functional analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York, 2011.

  9. Cantrel R. S., Cosner C., Lou Y.: Advection-mediated coexistence of competing species. Proc. Royal Soc. Edinburgh, 137, 497–512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cantrell R. S., Cosner C.: Spatial Ecology via Reaction–Diffusion Equations. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  11. Chen T., Levine H. A., Sacks P. E.: Analysis of a convective reaction–diffusion equation. Nonlinear Anal., Theor., Meth. and Appl., 12, 1349–1370 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Denk R., Hieber M., Prüss J.: Optimal \({L^{p}-L^{q}}\)-regularity for parabolic problems with inhomogeneous boundary data. Math. Z., 257, 193–224 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. L. C. Evans. Partial differential equations. Providence, RI: American Mathematical Society, 1998.

  14. Feireisl E., Petzeltova H., Trivisa K.: Multicomponent reactive flows: Global-in-time existence for large data. Comm. Pure Appl. Anal., 7, 1017–1047 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Fischer. Well-posedness and asymptotic behaviour in reactive and electro-kinetic flow processes. PhD thesis, Technische Universität Darmstadt, 2013.

  16. Gajewski H., Gröger K.: Reaction–diffusion processes of electrically charged species. Mathematische Nachrichten, 177, 109–130 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goudon T., Vasseur A.: Regularity analysis for systems of reaction–diffusion equations. Ann. Sci. Ec. Norm. Sup., 43, 117–142 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hollis S. L., Martin R. H. Jr., Pierre M.: Global existence and boundedness in reaction–diffusion systems. SIAM J. Math. Anal., 18(3), 744–761 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hollis S. L., Morgan J.: Global existence and asymptotic decay for systems of convective reaction–diffusion equations. Nonlinear Anal., Theor., Meth. and Appl., 17, 725–739 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kräutle K.: Existence of global solutions of multicomponent reactive transport problems with mass action kinetics in porous media. J. Appl. Ana. Comp., 1, 497–515 (2011)

    MathSciNet  MATH  Google Scholar 

  21. O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural’ceva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1967.

  22. Morgan J.: Global existence for semilinear parabolic systems. SIAM J. Math. Anal., 20(5), 1128–1144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. I. Nazarov. Hölder estimates for bounded solutions of problems with an oblique derivative for parabolic equations with nondivergent structure. J. Sov. Math. translated from Probl. Mat. Anal., 11 (1990), 37–46 (Russian), 64(6):1247–1252, 1993.

  24. A. I. Nazarov and N.N. Uraltseva. The oblique boundary-value problem for a quasilinear parabolic equation. J. Math. Sci. translated from ZNS POMI, 200 (1992), 118–131 (Russian), 77(3):3212–3220, 1995.

  25. Pierre M.: Global existence in reaction–diffusion systems with control of mass: a survey. Milan J. Math., 78(2), 417–455 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Pierre and D. Schmitt. Blowup in reaction–diffusion systems with dissipation of mass. SIAM Rev., 42(1):93–106 (electronic), 2000.

  27. J. Prüss. Maximal regularity for evolution equations in \({L_p}\)-spaces. Conf. Semin. Mat. Univ. Bari, 285:1–39 (2003), 2002.

  28. G. Rolland. Global existence and fast-reaction limit in reaction–diffusion systems with cross effects. PhD thesis, ENS Cachan-Bretagne, 2012.

  29. Simon J.: Compact sets in the space \({L^p(0,T;B)}\). Annali di Matematica Pura ed Applicata, 146, 65–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Texier-Picard R., Volpert V.: Reaction–diffusion–convection problems in unbounded cylinders. Revista Matemàtica Complutense, 16, 223–276 (2003)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Bothe.

Additional information

Dedicated to Jan Prüss on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bothe, D., Fischer, A., Pierre, M. et al. Global wellposedness for a class of reaction–advection–anisotropic-diffusion systems. J. Evol. Equ. 17, 101–130 (2017). https://doi.org/10.1007/s00028-016-0348-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-016-0348-0

Mathematics Subject Classification

Keywords

Navigation