Skip to main content
Log in

Phase-lag heat conduction: decay rates for limit problems and well-posedness

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In two recent papers, the authors have studied conditions on the relaxation parameters in order to guarantee the stability or instability of solutions for the Taylor approximations to dual-phase-lag and three-phase-lag heat conduction equations. However, for several limit cases relating to the parameters, the kind of stability was unclear. Here, we analyze these limit cases and clarify whether we can expect exponential or slow decay for the solutions. Moreover, rather general well-posedness results for three-phase-lag models are presented. Finally, the exponential stability expected by spectral analysis is rigorously proved exemplarily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Borgmeyer, Wärmeleitung und Thermoelastizität – Wohlgestelltheit von Three-Phase-Lag-Modellen, Diplomarbeit (Master Thesis), University of Konstanz, 2012.

  2. Chandrasekharaiah D. S.: Hyperbolic thermoelasticity: A review of recent literature. Appl. Mech. Rev., 51, 705–729 (1998)

    Article  Google Scholar 

  3. Dreher M., Quintanilla R., Racke R.: Ill posed problems in thermomechanics. Applied Mathematics Letters 22, 1374–1379 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Green A. E., Naghdi P. M.: On undamped heat waves in an elastic solid. J. Thermal Stresses 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  5. Green A. E., Naghdi P. M.: without energy dissipation. J. Elasticity, 31, 189–208 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hetnarski R. B., Ignaczak J.: Generalized thermoelasticity. J. Thermal Stresses, 22, 451–470 (1999)

    Article  MathSciNet  Google Scholar 

  7. Hetnarski R. B., Ignaczak J.: Nonclassical dynamical thermoelasticity. International Journal of Solids and Structures, 37, 215–224 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. C. O. Horgan and R. Quintanilla, Spatial behaviour of solutions of the dual-phase-lag heat equation, Math. Methods Appl. Sci, 28, 43-57(2005), 43–57.

  9. Ignaczak J.: Plane Progressive Heat Waves in Metal Films. J. Thermal Stresses, 35, 48–60 (2012)

    Article  Google Scholar 

  10. J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds, Oxford: Oxford Mathematical Monographs, 2010.

  11. Miranville A., Quintanilla R.: A phase-field model based on a three-phase-lag heat conduction. Applied Mathematics and Optimization, 63, 133–150 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mukhopadhyay S., Kothari S., Kumar R.: On the representation of solutions for the theory of generalized thermoelasticity with three phase-lags. Acta Mechanica 214, 305–314 (2010)

    Article  MATH  Google Scholar 

  13. Quintanilla R.: Exponential stability in the dual-phase-lag heat conduction theory. J.Non-Equilibrium Thermodynamics, 27, 217–227 (2002)

    Article  MATH  Google Scholar 

  14. Quintanilla R.: A condition on the delay parameters in the one-dimensional dual-phase-lag thermoelastic theory. J. Thermal Stresses, 26, 713–721 (2003)

    Article  MathSciNet  Google Scholar 

  15. Quintanilla R., Racke R.: Qualitative aspects in dual-phase-lag thermoelasticity. SIAM Journal of Applied Mathematics. 66, 977–1001 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Quintanilla R., Racke R.: A note on stability of dual-phase-lag heat conduction. Int. J. Heat Mass Transfer, 49, 1209–1213 (2006)

    Article  MATH  Google Scholar 

  17. Quintanilla R., Racke R.: Qualitative aspects in dual-phase-lag heat conduction. Proc. Royal Society London A., 463, 659–674 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Quintanilla R., Racke R.: A note on stability in three-phase-lag heat conduction. Int. J. Heat Mass Transfer, 51, 24–29 (2008)

    Article  MATH  Google Scholar 

  19. Roy Choudhuri S. K.: On a thermoelastic three-phase-lag model. J. Thermal Stresses, 30, 231–238 (2007)

    Article  Google Scholar 

  20. B. Straughan Heat Waves, Appl. Math. Sci. 177, Springer, Berlin, 2011.

  21. Tzou D.Y.: A unified approach for heat conduction from macro- to micro-scales. ASME J. Heat Transfer, 117, 8–16 (1995)

    Article  Google Scholar 

  22. L. Wang, X. Zhou, and X. Wei, Heat Conduction, Mathematical Models and Analytical Solutions. Springer, Berlin Heidelberg, 2008.

  23. O. Weinmann, Dual-Phase-Lag Thermoelastizität. Dissertation (PhD thesis), University of Konstanz, 2009.

  24. Yang X.: Generalized form of Hurwitz-Routh criterion and Hopf bifurcation of higher order. Appl. Math. Letters 15, 615–621 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Racke.

Additional information

Ramón Quintanilla: Work of R.Q. is part of the project “Análisis Matemático de las Ecuaciones en Derivadas Parciales de la Termomecánica.” (MTM2013-42004-P) submitted to the Spanish Ministry of Economy and Competitiveness.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgmeyer, K., Quintanilla, R. & Racke, R. Phase-lag heat conduction: decay rates for limit problems and well-posedness. J. Evol. Equ. 14, 863–884 (2014). https://doi.org/10.1007/s00028-014-0242-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-014-0242-6

Mathematics Subject Classification (2010)

Keywords

Navigation