Skip to main content
Log in

Moderate nutrient enrichment affects algal and detritus pathways differently in a temperate rainforest stream

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We manipulated nutrient concentrations in 14 channels adjacent to a forested headwater stream to examine the influence of nutrient enrichment on detrital and algal pathways. Our fertilization experiment increased the average water concentration of N up to a maximum of ~2 times and of P up to ~7 times relative to control channels, levels considered as moderate enrichment. We measured algal biomass and leaf mass loss as a proxy measure of primary production and leaf decomposition, respectively. We determined the effects of nutrients on the quantity and quality of food resources and tested whether these effects influenced biotic structure and stoichiometry. Our results indicate that algal pathways showed significant and consistent responses across treatments by increasing epilithon quantity and quality. Moreover, despite an increase in quality of leaves, its quantity and loss rate were unaltered. Importantly, changes to detritivore densities were subtle, but they showed a hump-shaped response along the induced nutrient gradient. This trend suggests the existence of nutrient limitation at low nutrient concentrations and the existence of negative biotic interactions and/or sublethal toxic effects at higher concentrations, while enhancing detritivore densities at intermediated enriched conditions (threshold at ~10 µg/l of P–PO4 in water and 0.10% of leaf-P). This study reveals the complexity of connections between algal and detritus pathways with implications in the study of transfer of matter and energy in oligotrophic, forested headwater streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington DC

    Google Scholar 

  • Atwood TB, Hammill E, Richardson JS (2014) Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems. Glob Change Biol 20:3386–3396. doi:10.1111/gcb.12516

    Article  Google Scholar 

  • Boersma M, Becker C, Malzahn AM, Vernooij S (2009) Food chain effects of nutrient limitation in primary producers. Mar Freshw Res 60:983–989. doi:10.1071/MF08240

    Article  CAS  Google Scholar 

  • Cross WF, Benstead JP, Rosemond AD, Wallace JB (2003) Consumer-resource stoichiometry in detritus-based streams. Ecol Lett 6:721–732. doi:10.1046/j.1461-0248.2003.00481.x

    Article  Google Scholar 

  • Cross WF, Wallace JB, Rosemond AD, Eggert SL (2006) Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87:1556–1565. doi:10.1890/0012-9658(2006)87[1556:WNEISP]2.0.CO;2

    Article  CAS  PubMed  Google Scholar 

  • Danger M, Cornut J, Chauvet E, Chavez P, Elger A, Lecerf A (2013) Benthic algae stimulate leaf litter decomposition in detritus-based headwater streams: a case of aquatic priming effect? Ecology 94:1604–1613. doi:10.1890/12-0606.1

    Article  PubMed  Google Scholar 

  • Davis JM, Rosemond AD, Eggert SL, Cross WF, Wallace JB (2010) Nutrient enrichment differentially affects body sizes of primary consumers and predators in a detritus-based stream. Limnol Oceanogr 55:2305–2316. doi:10.4319/lo.2010.55.6.2305

    Article  Google Scholar 

  • Delong MD, Thorp JH (2006) Significance of instream autotrophs in trophic dynamics of the Upper Mississippi River. Oecologia 147:76–85. doi:10.1007/s00442-005-0241-y

    Article  PubMed  Google Scholar 

  • Dunck B, Fernandes EL, Cássio F, Cunhac A, Rodrigues L, Pascoal C (2015) Responses of primary production, leaf litter decomposition and associated communities to stream eutrophication. Environ Pollut 202:32–40. doi:10.1016/j.envpol.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauleyk E, Schulz KL, Siemann EH, Sterner RW (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580. doi:10.1038/35046058

    Article  CAS  PubMed  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142. doi:10.1111/j.1461-0248.2007.01113.x

    Article  PubMed  Google Scholar 

  • Ferreira V, Castagneyrol B, Koricheva J, Gulis V, Chauvet E, Graça MAS (2015) A meta-analysis of the effects of nutrient. Biol Rev 90:669–688. doi:10.1111/brv.12125

    Article  PubMed  Google Scholar 

  • Finlay K, Beisner BE, Patoine A, Pinel-Alloul B (2007) Regional ecosystem variability drives the relative importance of bottom-up and top-down factors for zooplankton size spectra. Can J Fish Aquat Sci 64:516–529. doi:10.1139/f07-028

    Article  CAS  Google Scholar 

  • Francoeur SN (2001) Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. J N Am Benthol Soc 20:358–368. doi:10.2307/1468034

    Article  Google Scholar 

  • Frost PC, Evans-White MA, Finkel ZV, Jensen TC, Matzek V (2005) Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109:18–28. doi:10.1111/j.0030-1299.2005.14049.x

    Article  Google Scholar 

  • García L, Pardo I (2015) Food type and temperature constraints on the fitness of a dominant freshwater shredder. Ann Limnol Int J Lim 51:227–235. doi:10.1051/limn/2015017

    Article  Google Scholar 

  • García L, Richardson JS, Pardo I (2012) Leaf quality influences invertebrate colonization and drift in a temperate rainforest stream. Can J Fish Aquat Sci 69:1663–1673. doi:10.1139/F2012-090

    Article  Google Scholar 

  • García L, Pardo I, Richardson JS (2014) A cross-continental comparison of stream invertebrate community assembly to assess convergence in forested headwater streams. Aquat Sci 76:29–40. doi:10.1007/s00027-013-0308-5

    Article  Google Scholar 

  • Greenwood JL, Rosemond AD, Wallace JB, Cross WF, Weyers HS (2007) Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways. Oecologia 151:637–649. doi:10.1007/s00442-006-0609-7

    Article  PubMed  Google Scholar 

  • Gulis V, Rosemond AD, Suberkropp K, Weyers HS, Benstead JP (2004) Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshw Biol 49:1437–1447. doi:10.1111/j.1365-2427.2004.01281.x

    Article  Google Scholar 

  • Hill WR, Fanta SE, Roberts BJ (2009) Quantifying phosphorus and light effects in stream algae. Limnol Oceanogr 54:368–380. doi:10.4319/lo.2009.54.1.0368

    Article  CAS  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, González A, Duffy JE, Gamfeldt L, O´Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108. doi:10.1038/nature11118

    CAS  PubMed  Google Scholar 

  • Hoover TM, Pinto X, Richardson JS (2011) Riparian canopy type, management history, and successional stage control fluxes of plant litter to streams. Can J For Res 41:1394–1404. doi:10.1139/x11-067

    Article  Google Scholar 

  • Kiffney PM, Bull JP (2000) Factors controlling periphyton accrual during summer in headwater streams of southwestern British Columbia, Canada. J Freshw Ecol 15:339–351. doi:10.1080/02705060.2000.9663752

    Article  Google Scholar 

  • Kiffney PM, Richardson JS, Bull JP (2004) Establishing light as a casual mechanism structuring stream communities in response to experimental manipulation of riparian buffer width. J N Am Benthol Soc 23:542–555. doi:10.1899/0887-3593(2004)023<0542:ELAACM>2.0.CO;2

    Article  Google Scholar 

  • Lecerf A, Richardson JS (2011) Assessing the functional importance of large-bodied invertebrates in experimental headwater streams. Oikos 120:950–960. doi:10.1111/j.1600-0706.2010.18942.x

    Article  Google Scholar 

  • Lecerf A, Risnoveanu G, Popescu C, Gessner MO, Chauvet E (2007) Decomposition of diverse litter mixtures in streams. Ecology 88:219–227. doi:10.1890/0012-9658(2007)88[219:DODLMI]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Malzahn AM, Hantzsche F, Schoo KL, Boersma M, Aberle N (2010) Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162:35–48. doi:10.1007/s00442-009-1458-y  

    Article  PubMed  Google Scholar 

  • March JG, Pringe CM (2003) Food web structure and basal resource utilization along a tropical island stream continuum, Puerto Rico. Biotropica 35:84–93. doi:10.1111/j.1744-7429.2003.tb00265.x

    Article  Google Scholar 

  • Merritt RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of North America. 4th edn. Kendall/Hunt Publishing Company, Dubuque

    Google Scholar 

  • Mulholland PJ, Tank JL, Sanzone DM, Wollheim WM, Peterson BJ, Webster JR, Meyer JL (2000) Food resources of stream macroinvertebrates determined by natural-abundance stable C and N isotopes and a 15N tracer addition. J N Am Benthol Soc 19:145–157. doi:10.2307/1468287

    Article  Google Scholar 

  • Naeem S, Hahn DR, Schuurman G (2000) Producer–decomposer co-dependency influences biodiversity effects. Nature 403:762–764. doi:10.1038/35001568

    Article  CAS  PubMed  Google Scholar 

  • Niyogi DK, Koren M, Arbuckle CJ, Townsend CR (2007) Stream communities along a catchment land-use gradient: subsidy-stress responses to pastoral development. Environ Manage 39:213–225. doi:10.1007/s00267-005-0310-3

    Article  PubMed  Google Scholar 

  • Odum EP, Finn JT, Franz EH (1979) Perturbation theory and the subsidy-stress gradient. Bioscience 29:349–352. doi:10.2307/1307690

    Article  Google Scholar 

  • Richardson JS (2001) Life cycle phenology of common detritivores from a temperate rainforest stream. Hydrobiologia 455:87–95. doi:10.1023/A:1011943532162

    Article  Google Scholar 

  • Rosemond AD, Pringle CM, Ramírez A, Paul MJ (2001) A test of top–down and bottom–up control in a detritus-based food web. Ecology 82:2279–2297. doi:10.1890/0012-9658(2001)082[2279:ATOTDA]2.0.CO;2

    Article  Google Scholar 

  • Rosemond AD, Benstead JP, Bumpers PM, Gulis V, Kominoski JS, Manning DWP, Suberkropp K, Wallace JB (2015) Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347:1142–1145. doi:10.1126/science.aaa1958

    Article  CAS  PubMed  Google Scholar 

  • Sistla SA, Appling AP, Lewandowska AM, Taylor BN, Wolf AA (2015) Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos 124:949–959. doi:10.1111/oik.02385

    Article  CAS  Google Scholar 

  • Small GE, Pringle CM (2010) Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a neotropical stream. Oecologia 162:581–590. doi:10.1007/s00442-009-1489-4

    Article  PubMed  Google Scholar 

  • Stelzer RS, Heffernan J, Likens GE (2003) The influence of dissolved nutrients and particulate organic matter quality on microbial respiration and biomass in a forest stream. Freshw Biol 48:1925–1937. doi:10.1046/j.1365-2427.2003.01141.x

    Article  CAS  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, UK

    Google Scholar 

  • Wallace BJ, Anderson NH (1996) Habitat, life history, and behavioral adaptations of aquatic insects. In: Merritt RW, Cummins KW (eds) An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque, pp 41–73

    Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR (1997) Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277:102–104. doi:10.1126/science.277.5322.102

    Article  CAS  Google Scholar 

  • Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A, Malmqvist B, McKie B, Elosegi A, Ferreira V, Graça MAS, Fleituch T, Lacoursiere JO, Nistorescu M, Pozo J, Risnoveanu G, Schindler M, Vadineanu A, Vought LBM, Chauvet E (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440. doi:10.1126/science.1219534

    Article  CAS  PubMed  Google Scholar 

  • Wrona FJ, Culp JM, Davies RW (1982) Macroinvertebrate subsampling: a simplified apparatus and approach. Can J Fish Aquat Sci 39:1051–1054. doi:10.1139/f82-140

    Article  Google Scholar 

Download references

Acknowledgements

We greatly thank Kasey Moran, Katharine MacIntosh, and Liam Irwin for field and laboratory technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliana García.

Ethics declarations

Funding

This study was funded by a postdoctoral call (Plan IC 2011–2015, Xunta de Galicia) to L. García. Additional funding for field sampling and water chemistry was provided by a Natural Sciences and Engineering Research Council (Canada) grant to J. S. Richardson.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, L., Pardo, I., Cross, W.F. et al. Moderate nutrient enrichment affects algal and detritus pathways differently in a temperate rainforest stream. Aquat Sci 79, 941–952 (2017). https://doi.org/10.1007/s00027-017-0543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-017-0543-2

Keywords

Navigation