Skip to main content

Advertisement

Log in

Terrestrial prey fuels the fish population of a small, high-latitude lake

Aquatic Sciences Aims and scope Submit manuscript

Abstract

The significance of terrestrial carbon subsidies in lake ecosystems has been under active research, but the contribution of terrestrial energy to the highest trophic levels has been explored less frequently. Here, we examined the terrestrial energy contribution to the ingested and assimilated diet of introduced brown trout (Salmo trutta) in a small, high-latitude lake using stomach content, stable isotope and fatty acid analyses. Stomach content analysis of brown trout indicated a terrestrial contribution of 29 % during the open-water season. Terrestrial prey was mainly composed of rodents (23 % in volume), but also amphibians and terrestrial insects. A longer term estimate, obtained with a mixing model (SIAR) for liver and dorsal muscle stable isotopes from 2010 and 2011, revealed a terrestrial contribution of 68.5 and 63.5 %, respectively. Through a similar model, fatty acid analysis on 2011 samples estimated a contribution of 71.5 %. Despite the relatively high proportion of rodents in the trout ingested diet, no correlation was evident between the long-term rodent cycles and terrestrial energy contribution estimated with stable isotopes of muscle. Terrestrial prey were an important long-term energy source for fish in small high-latitude lake, but its contribution was not directly dependent on the availability of pulsed resources such as small mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ackman RG (2007) Application of gas liquid chromatography to lipid separation and analysis: qualitative and quantitative analysis. In: Chow CK (ed) Fatty acids in foods and their health implications. CRC Press, Boca Raton, pp 47–62

    Chapter  Google Scholar 

  • Allan JD (1981) Determinants of diet of brook trout (Salvelinus fontinalis) in a mountain stream. Can J Fish Aquat Sci 38:184–192. doi:10.1139/f81-024

    Article  Google Scholar 

  • Amundsen P-A, Knudsen R (2009) Winter ecology of Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in a subarctic lake, Norway. Aquat Ecol 43:765–775

    Article  CAS  Google Scholar 

  • Bartels P, Cucherousset J, Steger K, Eklöv P, Tranvik LJ, Hillebrand H (2012) Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics. Ecology 93:1173–1182. doi:10.1890/11-1210.1

    Article  PubMed  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600. doi:10.1038/ngeo618

    Article  CAS  Google Scholar 

  • Baxter CV, Fausch KD, Carl Saunders W (2005) Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol 50:201–220. doi:10.1111/j.1365-2427.2004.01328.x

    Article  Google Scholar 

  • Brett MT, Kainz MJ, Taipale SJ, Seshan H (2009) Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc Natl Acad Sci USA 106:21197–21201. doi:10.1073/pnas.0904129106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter SR, Cole JJ, Pace ML, Van de Bogert M, Bade DL, Bastviken D, Gille CM, Hodgson JR, Kitchell JF, Kritzberg ES (2005) Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology 86:2737–2750. doi:10.1890/04-1282

    Article  Google Scholar 

  • Christie WW (1993) Preparation of ester derivatives of fatty acids for chromatographic analysis. In: Christie WW (ed) Advances in lipid methodology 2. pp 69–111

  • Cole JJ, Carpenter SR, Pace ML, Van De Bogert MC, Kitchell JL, Hodgson JR (2006) Differential support of lake food webs by three types of terrestrial organic carbon. Ecol Lett 9:558–568. doi:10.1111/j.1461-0248.2006.00898.x

    Article  PubMed  Google Scholar 

  • Doucett RR, Marks JC, Blinn DW, Caron M, Hungate BA (2007) Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen. Ecology 88:1587–1592. doi:10.1890/06-1184

    Article  PubMed  Google Scholar 

  • Downing J, Prairie Y, Cole J, Duarte C, Tranvik L, Striegl R, McDowell W, Kortelainen P, Caraco N, Melack J (2006) The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr 51:2388–2397. doi:10.4319/lo.2006.51.5.2388

    Article  Google Scholar 

  • Epanchin PN, Knapp RA, Lawler SP (2010) Nonnative trout impact an alpine-nesting bird by altering aquatic-insect subsidies. Ecology 91:2406–2415. doi:10.1890/09-1974

    Article  PubMed  Google Scholar 

  • Finlay JC, Vredenburg VT (2007) Introduced trout sever trophic connections in watersheds: consequences for a declining amphibian. Ecology 88:2187–2198. doi:10.1890/06-0344.1

    Article  PubMed  Google Scholar 

  • Francis TB, Schindler DE (2009) Shoreline urbanization reduces terrestrial insect subsidies to fishes in North American lakes. Oikos 118:1872–1882

    Article  Google Scholar 

  • Hayden B, Harrod C, Kahilainen KK (2014) Dual-fuels: intra-annual variation in the relative importance of benthic and pelagic resources to maintenance, growth and reproduction in a generalist salmonid fish. J Anim Ecol 83:1501–1512

    Article  PubMed  Google Scholar 

  • Helfield JM, Naiman RJ (2001) Effects of salmon-derived nitrogen on riparian forest growth and implications for stream productivity. Ecology 82:2403–2409. doi:10.2307/2679924

    Article  Google Scholar 

  • Hesslein RH, Hallard K, Ramlal P (1993) Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can J Fish Aquat Sci 50:2071–2076. doi:10.1139/f93-230

    Article  CAS  Google Scholar 

  • Hilditch TP, Williams PN (1964) The chemical constitution of natural fats. Chapman and Hall, London

    Google Scholar 

  • Hocking MD, Reynolds JD (2011) Impacts of salmon on riparian plant diversity. Science 331:1609–1612. doi:10.1126/science.1201079

    Article  CAS  PubMed  Google Scholar 

  • Hodgson JR, Hansen EM (2005) Terrestrial prey items in the diet of largemouth bass, Micropterus salmoides, in a small north temperate lake. J Freshw Ecol 20:793–794. doi:10.1080/02705060.2005.9664809

    Article  Google Scholar 

  • Hoekman D, Dreyer J, Jackson RD, Townsend PA, Gratton C (2011) Lake to land subsidies: experimental addition of aquatic insects increases terrestrial arthropod densities. Ecology 92:2063–2072

    Article  PubMed  Google Scholar 

  • Holtgrieve GW, Schindler DE (2011) Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams. Ecology 92:373–385

    Article  PubMed  Google Scholar 

  • Hyslop E (1980) Stomach contents analysis—a review of methods and their application. J Fish Biol 17:411–429. doi:10.1111/j.1095-8649.1980.tb02775.x

    Article  Google Scholar 

  • Jensen H, Kahilainen KK, Vinni M, Gjelland KØ, Malinen T, Harrod C, Amundsen P-A (2015) Food consumption rates of piscivorous brown trout (Salmo trutta) foraging on contrasting coregonid prey. Fish Manag Ecol 22:295–306

    Article  Google Scholar 

  • Jepsen JU, Hagen SB, Ims RA, Yoccoz NG (2008) Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J Anim Ecol 77:257–264

    Article  PubMed  Google Scholar 

  • Jobling M (2004) Are modifications in tissue fatty acid profiles following a change in diet the result of dilution? Test of a simple dilution model. Aquaculture 232:551–562. doi:10.1016/j.aquaculture.2003.07.001

    Article  CAS  Google Scholar 

  • Jonsson B, Jonsson N (2011) Ecology of Atlantic salmon and brown trout-habitat as a template for life histories. Springer, London

    Book  Google Scholar 

  • Kahilainen K, Lehtonen H (2001) Resource use of native and stocked brown trout Salmo trutta L., in a subarctic lake. Fish Manag Ecol 8:83–94

    Article  Google Scholar 

  • Kaya Y, Erdem ME (2009) Seasonal comparison of wild and farmed brown trout (Salmo trutta forma fario L., 1758): crude lipid, gonadosomatic index and fatty acids. Int J Food Sci Nut 60:413–423

    Article  CAS  Google Scholar 

  • Kernan MR, Battarbee RW, Moss B (2010) Climate change impacts on freshwater ecosystems. Blackwell Publishing Ltd, Oxford

    Book  Google Scholar 

  • Kiljunen M, Grey J, Sinisalo T, Harrod C, Immonen H, Jones RI (2006) A revised model for lipid-normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. J Appl Ecol 43:1213–1222. doi:10.1111/j.1365-2664.2006.01224.x

    Article  CAS  Google Scholar 

  • Klemetsen A, Amundsen PA, Dempson JB, Jonsson B, Jonsson N, O’Connell MF, Mortensen E (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus L.: a review of aspects of their life histories. Ecol Freshw Fish 12:1–59

    Article  Google Scholar 

  • Knight TM, McCoy MW, Chase JM, McCoy KA, Holt RD (2005) Trophic cascades across ecosystems. Nature 437:880–883. doi:10.1038/nature03962

    Article  CAS  PubMed  Google Scholar 

  • Leroux SJ, Loreau M (2012) Dynamics of reciprocal pulsed subsidies in local and meta-ecosystems. Ecosystems 15:48–59

    Article  Google Scholar 

  • Lisi PJ, Bentley KT, Armstrong JB, Schindler DE (2014) Episodic predation of mammals by stream fishes in a boreal river basin. Ecol Freshw Fish 23:622–630

    Article  Google Scholar 

  • Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846. doi:10.1111/j.1365-2656.2008.01394.x

    Article  PubMed  Google Scholar 

  • Marcarelli AM, Baxter CV, Mineau MM, Hall RO Jr (2011) Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–1225. doi:10.1890/10-2240.1

    Article  PubMed  Google Scholar 

  • McCutchan JH, Lewis WM Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. doi:10.1034/j.1600-0706.2003.12098.x

    Article  CAS  Google Scholar 

  • Mehner T, Ihlau J, Dörner H, Hölker F (2005) Can feeding of fish on terrestrial insects subsidize the nutrient pool of lakes? Limnol Oceanogr 50:2022–2031. doi:10.4319/lo.2005.50.6.2022

    Article  Google Scholar 

  • Nakano S, Murakami M (2001) Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci USA 98:166–170. doi:10.1073/pnas.98.1.166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano S, Kawaguchi Y, Taniguchi Y, Miyasaka H, Shibata Y, Urabe H, Kuhara N (1999) Selective foraging on terrestrial invertebrates by rainbow trout in a forested headwater stream in northern Japan. Ecol Res 14:351–360. doi:10.1046/j.1440-1703.1999.00315.x

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF, Hodgson JR, de Bogert Van, Matthew C, Bade DL, Kritzberg ES, Bastviken D (2004) Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427:240–243. doi:10.1038/nature02227

    Article  CAS  PubMed  Google Scholar 

  • Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672. doi:10.1371/journal.pone.0009672

    Article  PubMed  PubMed Central  Google Scholar 

  • Perga ME, Gerdeaux D (2005) ‘Are fish what they eat’ all year round? Oecologia 144:598–606. doi:10.1007/s00442-005-0069-5

    Article  CAS  PubMed  Google Scholar 

  • Polis GA, Anderson WB, Holt RD (1997) Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu Rev Ecol Syst 28:289–316. doi:10.1146/annurev.ecolsys.28.1.289

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rahel FJ (2007) Biogeographic barriers, connectivity and homogenization of freshwater faunas: it’s a small world after all. Freshw Biol 52:696–710. doi:10.1111/j.1365-2427.2006.01708.x

    Article  Google Scholar 

  • Robin J, Regost C, Arzel J, Kaushik S (2003) Fatty acid profile of fish following a change in dietary fatty acid source: model of fatty acid composition with a dilution hypothesis. Aquaculture 225:283–293. doi:10.1016/S0044-8486(03)00296-5

    Article  CAS  Google Scholar 

  • Soininen J, Bartels P, Heino J, Luoto M, Hillebrand H (2015) Toward more integrated ecosystem research in aquatic and terrestrial environments. Bioscience 65:174–182

    Article  Google Scholar 

  • Solomon CT, Carpenter SR, Clayton MK, Cole JJ, Coloso JJ, Pace ML, Vander Zanden MJ, Weidel BC (2011) Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model. Ecology 92:1115–1125

    Article  PubMed  Google Scholar 

  • Tammi J, Appelberg M, Beier U, Hesthagen T, Lappalainen A, Rask M (2003) Fish status survey of Nordic lakes: effects of acidification, eutrophication and stocking activity on present fish species composition. Ambio 32:98–105. doi:10.1579/0044-7447-32.2.98

    Article  PubMed  Google Scholar 

  • Thomas SM, Crowther TW (2015) Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. J Anim Ecol 84:861–870

    Article  PubMed  Google Scholar 

  • Turchini GM, Mentasti T, Frøyland L, Orban E, Caprino F, Moretti VM, Valfre F (2003) Effects of alternative dietary lipid sources on performance, tissue chemical composition, mitochondrial fatty acid oxidation capabilities and sensory characteristics in brown trout (Salmo trutta L.). Aquaculture 225:251–267. doi:10.1016/S0044-8486(03)00294-1

    Article  CAS  Google Scholar 

  • Vincent WF, Laybourn-Parry J (2008) Polar lakes and rivers. Oxford University Press, Oxford

    Book  Google Scholar 

  • Wilkinson GM, Carpenter SR, Cole JJ, Pace ML, Yang C (2013) Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshw Biol 58:2037–2049. doi:10.1111/fwb.12189

    Article  Google Scholar 

  • Windell J (1971) Food analysis and rate of digestion. In: Bagenal TB, Tesch FW (eds) Methods for assessment of fish production in fresh waters. Blackwell Scientific Publications, Oxford, pp 215–226

    Google Scholar 

  • Yang LH, Edwards KF, Byrnes JE, Bastow JL, Wright AN, Spence KO (2010) A meta-analysis of resource pulse-consumer interactions. Ecol Monogr 80:125–151

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Anne Liljendahl for starting the project, Dr. Paavo Hellstedt for the identification of rodent remains from fish stomach contents, and the personnel of the Värriö Research Station for helping with field sampling and providing the rodent data. We would also like to acknowledge the kind help of anonymous reviewers that helped with the manuscript finalization. This project was funded by the Maj and Tor Nessling Foundation and the Academy of Finland (FICCA-program, Cliche Consortium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Milardi.

Ethics declarations

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Funding

This study was funded by the Maj and Tor Nessling Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milardi, M., Käkelä, R., Weckström, J. et al. Terrestrial prey fuels the fish population of a small, high-latitude lake. Aquat Sci 78, 695–706 (2016). https://doi.org/10.1007/s00027-015-0460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-015-0460-1

Keywords

Navigation