Skip to main content

Advertisement

Log in

Macroinvertebrate community responses to duration, intensity and timing of annual dry events in intermittent forested and pasture streams

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Intermittent streams comprise the majority of stream length in many parts of the world, particularly dry regions. Many dry regions are expected to experience longer and more intense dry periods as the global climate changes. The response of benthic macroinvertebrate communities in intermittent streams to current variability in dry-period duration and intensity may predict their future response to climate change, but such responses require quantification in different stream types and climate zones. I compared the macroinvertebrate community among drier and wetter years from 2008 to 2012 in intermittent forested and pasture streams in a relatively warm, dry region of New Zealand. I predicted that macroinvertebrate communities would decline in density and taxonomic richness with increasing dryness, and that drought-sensitive Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa would show a stronger response than Diptera and non-insects. EPT richness and density did decline with increasing dry period duration, whereas total macroinvertebrate density and richness, and Diptera richness, showed weak and/or non-significant relationships. I predicted that loss of remnant pools (a potential dry-season refuge) would cause a decline in macroinvertebrate richness and density, but found no significant difference between years with and without pools. I predicted that years when flow resumed late in the autumn (when temperatures are too cool for insect flight) would have lower EPT richness and density than years when flow resumed early, and results confirmed this. Intermittent pasture stream communities showed a weaker response to dry period duration than communities in intermittent forested streams, as taxa relatively tolerant of agricultural stressors are also relatively tolerant of drying. Results suggest that global climate change will cause a loss of drought-sensitive species from intermittent streams in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abell DL (1984) Benthic invertebrates of some California intermittent streams. In: Jain S, Moyle P (eds) Vernal pools and intermittent streams. Symposium by the Institute of Ecology, University of California, California, pp 46–60

    Google Scholar 

  • Acuña V et al (2014) Why should we care about temporary waterways? Science 343:1080–1081. doi:10.1126/science.1246666

    Article  PubMed  Google Scholar 

  • Aho K, Derryberry D, Peterson T (2014) Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95:631–636. doi:10.1890/13-1452.1

    Article  PubMed  Google Scholar 

  • Álvarez M, Pardo I (2005) Life history and production of Agapetus quadratus (Trichoptera: Glossosomatidae) in a temporary, spring-fed stream. Freshw Biol 50:930–943. doi:10.1111/j.1365-2427.2005.01370.x

    Article  Google Scholar 

  • Anderson M, Gorley R, Clarke K (2008) Permanova + for primer: guide to software and statistical methods. Primer-E, Plymouth

    Google Scholar 

  • Arscott DB, Larned ST, Scarsbrook MR, Lambert P (2010) Aquatic invertebrate community structure along an intermittence gradient: Selwyn River, New Zealand. J N Am Benthol Soc 29:530–545. doi:10.1899/08-124.1

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) 'lme4': Linear mixed-effects models using Eigen and S4. R package version 1.1–7. http://CRAN.R-project.org/package=lme4

  • Bishop JA (1967) Some adaptations of Limnadia stanleyana king (Crustacea: Branchiopoda: Conchostraca) to a temporary freshwater environment. J Anim Ecol 36:599–609. doi:10.2307/2815

    Article  Google Scholar 

  • Bogan MT, Boersma KS, Lytle DA (2013) Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshw Biol 58:1016–1028. doi:10.1111/fwb.12105

    Article  Google Scholar 

  • Bonada N, Rieradevall M, Prat N (2007) Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589:91–106. doi:10.1007/s10750-007-0723-5

    Article  Google Scholar 

  • Boulton AJ (1989) Over-summering refuges of aquatic macroinvertebrates in two intermittent streams in central Victoria. T Roy Soc South Aust 113:23–34

    Google Scholar 

  • Boulton AJ (2003) Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw Biol 48:1173–1185. doi:10.1046/j.1365-2427.2003.01084.x

    Article  Google Scholar 

  • Boulton AJ, Lake PS (1992) The ecology of two intermittent streams in Victoria, Australia. Freshw Biol 27:99–121. doi:10.1111/j.1365-2427.1992.tb00527.x

    Article  Google Scholar 

  • Boulton AJ, Suter PJ (1986) Ecology of temporary streams - an Australian perspective. In: de Deckker P, Williams WD (eds) Limnology in Australia. Dr. W Junk Publishers, Dordrecht, pp 313–327

    Chapter  Google Scholar 

  • Brierley GJ, Brooks AP, Fryirs K, Taylor MP (2005) Did humid-temperate rivers in the Old and New Worlds respond differently to clearance of riparian vegetation and removal of woody debris?. Prog Phys Geog 29:27-49. doi:10.1191/0309133305pp433ra

    Article  Google Scholar 

  • Brock MA, Nielsen DL, Shiel RJ, Green JD, Langley JD (2003) Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshw Biol 48:1207–1218. doi:10.1046/j.1365-2427.2003.01083.x

    Article  Google Scholar 

  • Brooks R (2009) Potential impacts of global climate change on the hydrology and ecology of ephemeral freshwater systems of the forests of the northeastern United States. Climatic Change 95:469–483. doi:10.1007/s10584-008-9531-9

    Article  Google Scholar 

  • Chessman BC (2015) Relationships between lotic macroinvertebrate traits and responses to extreme drought. Freshw Biol 60:50–63. doi:10.1111/fwb.12466

    Article  Google Scholar 

  • Chester ET, Robson BJ (2011) Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshw Biol 56:2094–2104. doi:10.1111/j.1365-2427.2011.02644.x

    Article  Google Scholar 

  • Clapcott J, Young R, Harding J, Matthaei C, Quinn J, Death R (2011) Sediment assessment methods: protocols and guidelines for assessing the effects of deposited fine sediment on in-stream values. Cawthron Institute, Nelson

    Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. Primer-E Ltd., Plymouth

    Google Scholar 

  • Clarke A, MacNally R, Bond N, Lake PS (2010) Flow permanence affects aquatic macroinvertebrate diversity and community structure in three headwater streams in a forested catchment. Can J Fish Aquat Sci 67:1649–1657. doi:10.1139/f10-087

    Article  Google Scholar 

  • Collier KJ (2008) Average score per metric: an alternative metric aggregation method for assessing wadeable stream health. N Z J Mar Freshw Res 42:367–378. doi:10.1080/00288330809509965

    Article  Google Scholar 

  • Core Team R (2014) R: a language and environment for statistical computing, 3.1.1 edn. R Foundation for Statistical Computing, Vienna

  • Datry T (2012) Benthic and hyporheic invertebrate assemblages along a flow intermittence gradient: effects of duration of dry events. Freshw Biol 57:563–574. doi:10.1111/j.1365-2427.2011.02725.x

    Article  Google Scholar 

  • Datry T, Corti R, Philippe M (2012) Spatial and temporal aquatic–terrestrial transitions in the temporary Albarine River, France: responses of invertebrates to experimental rewetting. Freshwat Biol 57:716-727. doi:10.1111/j.1365-2427.2012.02737.x

    Article  Google Scholar 

  • Datry T, Larned ST, Tockner K (2014) intermittent rivers: a challenge for freshwater ecology. Bioscience. doi:10.1093/biosci/bit027

    Google Scholar 

  • Dieter D et al. (2011) Preconditioning effects of intermittent stream flow on leaf litter decomposition. Aquat Sci 73:599-609. doi:10.1007/s00027-011-0231-6

    Article  Google Scholar 

  • Dieterich M, Anderson NH (2000) The invertebrate fauna of summer-dry streams in western Oregon. Arch Hydrobiol 147:273–295

    Google Scholar 

  • Feminella JW (1996) Comparison of benthic macroinvertebrate assemblages in small streams along a gradient of flow permanence. J N Am Benthol Soc 15:651–669. doi:10.2307/1467814

    Article  Google Scholar 

  • Fenoglio S, Bo T, Cucco M, Malacarne G (2007) Response of benthic invertebrate assemblages to varying drought conditions in the Po river (NW Italy). Ital J Zool 74:191–201. doi:10.1080/11250000701286696

    Article  Google Scholar 

  • Fritz KM, Dodds WK (2004) Resistance and resilience of macroinvertebrate assemblages to drying and flood in a tallgrass prairie stream system. Hydrobiologia 527:99–112. doi:10.1023/B:HYDR.0000043188.53497.9b

    Article  Google Scholar 

  • Fritz KM, Dodds WK (2005) Harshness: characterisation of intermittent stream habitat over space and time. Mar Freshw Res 56:13–23. doi:10.1071/MF04244

    Article  Google Scholar 

  • García-Roger EM et al (2013) Spatial scale effects on taxonomic and biological trait diversity of aquatic macroinvertebrates in Mediterranean streams. Fundam Appl Limnol 183:89–105. doi:10.1127/1863-9135/2013/0429

    Article  Google Scholar 

  • Hawke’s Bay Regional Council (2003) Ruataniwha plains water resources investigation. Hawke’s Bay Regional Council Environmental Monitoring Group, Napier

    Google Scholar 

  • Jaeger KL, Olden JD (2012) Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers. River Res Appl 28:1843–1852. doi:10.1002/rra.1554

    Article  Google Scholar 

  • James ABW, Suren AM (2009) The response of invertebrates to a gradient of flow reduction—an instream channel study in a New Zealand lowland river. Freshw Biol 54:2225–2242. doi:10.1111/j.1365-2427.2009.02254.x

    Article  Google Scholar 

  • Jiménez Cisneros BE et al. (2014) Freshwater resources. In: Field CB et al. (eds) Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 229–269

  • Larned ST, Datry T, Robinson CT (2007) Invertebrate and microbial responses to inundation in an ephemeral river reach in New Zealand: effects of preceding dry periods. Aquat Sci 69:554-567. doi:10.1007/s00027-007-0930-1

    Article  Google Scholar 

  • Larned ST, Datry T, Arscott DB, Tockner K (2010) Emerging concepts in temporary-river ecology. Freshw Biol 55:717–738. doi:10.1111/j.1365-2427.2009.02322.x

    Article  Google Scholar 

  • Ledger ME, Harris RM, Armitage PD, Milner AM (2012) Climate change impacts on community resilience: evidence from a drought disturbance experiment. In: Woodward G, Jacob U (eds) Advances in ecological research, vol 46. Academic Press, Waltham, p 211

    Google Scholar 

  • Leigh C, Boulton AJ, Courtwright JL, Fritz K, May CL, Walker RH, Datry T (2015) Ecological research and management of intermittent rivers: an historical review and future directions. Freshw Biol. doi:10.1111/fwb.12646

    Google Scholar 

  • Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100. doi:10.1016/j.tree.2003.10.002

    Article  PubMed  Google Scholar 

  • Matthaei CD, Piggott JJ, Townsend CR (2010) Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. J Appl Ecol 47:639–649. doi:10.1111/j.1365-2664.2010.01809.x

    Article  Google Scholar 

  • Ministry for the Environment (2014) National policy statement for freshwater management 2014. Wellington, New Zealand

    Google Scholar 

  • Mullan B, Porteous AS, Wratt D, Hollis M (2005) Changes in drought risk with climate change. National Institute of Water and Atmospheric Research, Wellington

    Google Scholar 

  • Mullan B, Wratt D, Dean S, Hollis M, Allan S, Williams T, Kenny G (2008) Climate change effects and impacts assessment. A guidance manual for local government, 2nd edn. Ministry for the Environment, Wellington

    Google Scholar 

  • Palmer M, Allan JD, Meyer J, Bernhardt ES (2007) River restoration in the twenty first century: data and experiential knowledge to inform future efforts. Restor Ecol 15:472–481. doi:10.1111/j.1526-100X.2007.00243.x

    Article  Google Scholar 

  • Parkyn SM, Smith BJ (2011) Dispersal constraints for stream invertebrates: setting realistic timescales for biodiversity restoration. Environ Manage 48:602–614. doi:10.1007/s00267-011-9694-4

    Article  PubMed  Google Scholar 

  • Pearce F (2006) When the rivers run dry: water—the defining crisis of the twenty first century. Beacon Press, Boston

    Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) Package 'nlme': Linear and Nonlinear Mixed Effects Models. R package version 3.1-120. http://cran.r-project.org/web/packages/nlme/nlme.pdf

  • Quinn JM (2000) Effects of pastoral development. In: Collier KJ, Winterbourn MJ (eds) New Zealand stream invertebrates: ecology and implications for management. The Caxton Press, Christchurch, pp 208–229

    Google Scholar 

  • Quinn JM, Hickey CW (1990) Characterisation and classification of benthic invertebrate communities in 88 New Zealand rivers in relation to environmental factors. N Z J Mar Freshw Res 24:387–409. doi:10.1080/00288330.1990.9516432

    Article  CAS  Google Scholar 

  • Rajanayaka C, Donaggio J, McEwan H (2010) Update of water allocation data and estimate of actual water use of consented takes 2009–10. Prepared for Ministry for the Environment. Report No. H10002/3. Aqualinc Research Ltd:124

  • Reisinger A et al. (2014) Australasia. In: Barros VR et al. (eds) Climate Change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, pp 1371–1438

  • Reisinger A, Mullan AB, Manning M, Wratt DW, Nottage RAC (2010) Global and local climate change scenarios to support adaptation in New Zealand. In: Nottage RAC, Wratt DS, Bornman JF, Jones K (eds) Climate change adaptation in New Zealand: future scenarios and some sectoral perspectives. New Zealand Climate Change Centre, Wellington, pp 26–43

    Google Scholar 

  • Resh VH (1992) Year-to-year changes in the age structure of a caddisfly population following loss and recovery of a springbrook habitat. Ecography 15:314–317. doi:10.2307/3683163

    Article  Google Scholar 

  • Robson BJ, Chester ET, Austin CM (2011) Why life history information matters: drought refuges and macroinvertebrate persistence in non-perennial streams subject to a drier climate. Mar Freshw Res 62:801–810. doi:10.1071/MF10062

    Article  CAS  Google Scholar 

  • Robson B, Chester E, Mitchell B, Matthews T (2013) Disturbance and the role of refuges in Mediterranean climate streams. Hydrobiologia 719:1–15. doi:10.1007/s10750-012-1371-y

    Article  Google Scholar 

  • Scarsbrook MR (2000) Life-histories. In: Collier KJ, Winterbourn MJ (eds) New Zealand stream invertebrates: ecology and implications for management. New Zealand Limnological Society, Christchurch, pp 76–99

    Google Scholar 

  • Smith BJ, Collier KJ, Halliday NJ (2002) Composition and flight periodicity of adult caddisflies in New Zealand hill-country catchments of contrasting land use. N Z J Mar Freshw Res 36:863–878. doi:10.1080/00288330.2002.9517138

    Article  Google Scholar 

  • Stanley EH, Buschman DL, Boulton AJ, Grimm NB, Fisher SG (1994) Invertebrate resistance and resilience to intermittency in a desert stream. Am Midl Nat 131:288–300. doi:10.2307/2426255

    Article  Google Scholar 

  • Storey RG, Quinn JM (2008) Composition and temporal changes in macroinvertebrate communities of intermittent streams in Hawke’s Bay, New Zealand. N Z J Mar Freshw Res 42:109–125. doi:10.1080/00288330809509941

    Article  Google Scholar 

  • Storey RG, Quinn JM (2011) Life histories and life history strategies of invertebrates inhabiting intermittent streams in Hawke’s Bay, New Zealand. N Z J Mar Freshw Res 45:213–230. doi:10.1080/00288330.2011.554988

    Article  Google Scholar 

  • Storey RG, Quinn JM (2013) Survival of aquatic invertebrates in dry bed sediments of intermittent streams: temperature tolerances and implications for riparian management. Freshw Sci 32:250–266. doi:10.1899/12-008.1

    Article  Google Scholar 

  • Stubbington R (2012) The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour. Mar Freshw Res 63:293–311. doi:10.1071/MF11196

    Article  Google Scholar 

  • Stubbington R, Datry T (2013) The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshw Biol 58:1202–1220. doi:10.1111/fwb.12121

    Article  Google Scholar 

  • Suding KN, Hobbs RJ (2009) Threshold models in restoration and conservation: a developing framework. Trends Ecol Evol 24:271–279. doi:10.1016/j.tree.2008.11.012

    Article  PubMed  Google Scholar 

  • Suren AM, Jowett IG (2006) Effects of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshw Biol 51:2207–2227. doi:10.1111/j.1365-2427.2006.01646.x

    Article  Google Scholar 

  • Tait A, Sturman J, Clark M (2012) An assessment of the accuracy of interpolated daily rainfall for New Zealand. J Hydrol (New Zealand) 51:25

    Google Scholar 

  • Townsend CR, Uhlmann SS, Matthaei CD (2008) Individual and combined responses of stream ecosystems to multiple stressors. J Appl Ecol 45:1810–1819. doi:10.1111/j.1365-2664.2008.01548.x

    Article  Google Scholar 

  • Vinebrooke R, Cottingham K, Norberg J, Scheffer M, Dodson S, Maberly S, Sommer U (2004) Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104:451–457. doi:10.1111/j.0030-1299.2004.13255.x

    Article  Google Scholar 

  • Vinson MR, Hawkins CP (1998) Biodiversity of stream insects: variation at local, basin, and regional scales. Annu Rev Entomol 43:271–293. doi:10.1146/annurev.ento.43.1.271

    Article  CAS  PubMed  Google Scholar 

  • Williams DD (1996) Environmental constraints in temporary fresh waters and their consequences for the insect fauna. J N Am Benthol Soc 15:634–650. doi:10.2307/1467813

    Article  Google Scholar 

  • Williams DD (2006) The biology of temporary waters. Oxford University Press, Oxford

    Google Scholar 

  • Winterbourn MJ (2005) Dispersal, feeding and parasitism of adult stoneflies (Plecoptera) at a New Zealand forest stream. Aquat Insects 27:155–166. doi:10.1080/01650420500062840

    Article  Google Scholar 

  • Winterbourn M, Gregson K, Dolphin C (2006) Guide to the aquatic insects of New Zealand. Bulletin of the Entomological Society of New Zealand, 4 edn, vol 14. Entomological Society of New Zealand, Auckland

  • Winterbourn MJ, Chadderton WL, Entrekin SA, Tank JL, Harding JS (2007) Distribution and dispersal of adult stream insects in a heterogeneous montane environment. Fundam Appl Limnol 168:127–135. doi:10.1127/1863-9135/2007/0168-0127

    Article  Google Scholar 

  • Zar J (1984) Biostatistical analyses, 2nd edn. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Zuur A, Ieno E, Walker N, Savaliev A, Smith G (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

I thank Paul Lambert for identifying macroinvertebrates, and Carola Hudson and Spencer Macdonald for noting the timing of drying and rewetting in the study streams. This study was funded by Hawkes Bay Regional Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Storey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storey, R. Macroinvertebrate community responses to duration, intensity and timing of annual dry events in intermittent forested and pasture streams. Aquat Sci 78, 395–414 (2016). https://doi.org/10.1007/s00027-015-0443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-015-0443-2

Keywords

Navigation