Skip to main content

Advertisement

Log in

Characterizing organic matter inputs to sediments of small, intermittent, prairie streams: a molecular marker and stable isotope approach

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Small rivers and streams are ecologically important because they contribute to the export of organic carbon to coastal environments, likely influencing the global carbon cycle. While organic matter (OM) dynamics in large rivers has been studied in quite some detail, less is known about small streams. Sources of OM in streams ultimately determine its availability to the food web and downstream transport. In this study, sediment samples were collected from the King’s Creek watershed in Konza Prairie (Kansas, USA) and analyzed using molecular biomarkers and bulk 13C stable isotopes with the objective to comparatively assess OM inputs between riparian forest vegetation and watershed grassland to small, intermittent streams. We are interested in the potential influence of woody riparian expansion that has been ongoing at the site. Biomarkers typical of the local C4 grasses (branched n-alkanes, phytadienes) were more abundant in some of the sediments of the upper reaches. The sediments of the lower reaches contained biomarkers of algae (short-chain aliphatic compounds, C25:5 highly branched isoprenoid, brassicasterol) and vascular plant-derived material (triterpenols). Degraded OM (triterpene/triterpenol ratio) was found throughout the watershed with no pattern between the upper and lower reaches. Bulk 13C isotope analysis showed that the upper reaches of the watershed receive significant OM inputs from the C4 grasses (74–99 %) while the lower reaches are more strongly influenced by riparian trees (26–27 %) and algae (21–22 %). These results suggest that the environmental dynamics of bulk OM and the biomarker composition of small prairie streams are highly complex and likely a function of several factors such as light availability, riparian vegetative composition and density, and varying degrees of OM storage, retention and transport along the river continuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrams MD (1986) Historical developments of gallery forests in northeast Kansas. Vegetatio 65:29–37

    Article  Google Scholar 

  • Allan JD, Castillo MM (1995) Detrital energy sources. Stream ecology: structure and function of running waters, 2nd edn. Springer, The Netherlands, pp 135–160

    Chapter  Google Scholar 

  • Belt ST, Massé G, Allard WG, Robert JM, Rowland SJ (2001) C25 highly branched isoprenoid alkenes in planktonic diatoms of the Pleurosigma genus. Org Geochem 32:1271–1275

    Article  CAS  Google Scholar 

  • Blair NE, Leithold EL, Ford ST, Peeler KA, Holmes JC, Perkey DW (2003) The persistence of memory: the fate of ancient sedimentary organic carbon in a modern sedimentary system. Geochim Cosmochim Acta 67:63–73

    Article  CAS  Google Scholar 

  • Brooks PW, Maxwell JR (1974) Early stage fate of phytol in recent deposited lacustrine sediments. In: Tissot B, Bienner F (eds) Advances in organic geochemistry. Editions Technip, Paris, pp 911–977

    Google Scholar 

  • Cooper JR, Pedentchouk N, Hiscock KM, Disdle P, Krueger T, Rawlins BG (2015) Apportioning sources of organic matter in streambed sediments: an integrated molecular and compound-specific stable isotope approach. Sci Total Environ 520:187–197

    Article  CAS  PubMed  Google Scholar 

  • Cranwell PA (1982) Lipids of aquatic sediments and sedimenting particulates. Prog Lipid Res 21:271–308

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Yamashita Y, Dodds WK, Jaffé R (2013) Dissolved black carbon in grassland streams: is there an effect of recent fire history? Chemosphere 90:2557–2562

    Article  CAS  PubMed  Google Scholar 

  • Dodds WK, Hutson RE, Eichem AC, Evans MA, Gudder DA, Fritz KM, Gray L (1996) The relationship of floods, drying, flow and light to primary production and producer biomass in a prairie stream. Hydrobiol 333:151–159

    Article  CAS  Google Scholar 

  • Dodds WK, Evans-White MA, Gerlanc NM, Gray L, Gudder DA, Kemp MJ, Lopez AL, Stagliano D, Strauss EA, Tank JL, Whiles MR, Wollheim WM (2000) Quantification of the nitrogen cycle in a prairie stream. Ecosyst 3:574–589

    Article  CAS  Google Scholar 

  • Dodds WK, Gido K, Whiles MR, Fritz KM, Matthews WJ (2004) Life on the edge: the ecology of great plains prairie streams. Bioscience 54:205–216

    Article  Google Scholar 

  • Dodds WK, Gido K, Whiles MR, Daniels MD, Grudzinski BP (2015) The stream biome gradient concept: factors controlling lotic systems across broad biogeographic scales. Freshwater Sci 34:1–19

    Article  Google Scholar 

  • Dornbush ME (2007) Grasses, litter, and their interaction affect microbial biomass and soil enzyme activity. Soil Biol Biochem 39:2241–2249

    Article  CAS  Google Scholar 

  • Edler C, Dodds WK (1996) The ecology of a subterranean isopod, Caecidotea tridentata. Freshwater Biol 35:249–259

    Article  Google Scholar 

  • Eglinton TI (2008) Carbon cycle: tempestuous transport. Nat Geosci 1:727–728

    Article  CAS  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  CAS  PubMed  Google Scholar 

  • Farnsworth KL, Milliman JD (2003) Effects of climatic and anthropogenic change on small mountainous rivers: the Salinas River example. Glob Planet Change 39:53–64

    Article  Google Scholar 

  • Freeman CC (1998) The flora of Konza Prairie. A historical review and contemporary patterns. In: Knapp AK, Briggs JM, Hartnett DC, Collins SL (eds) Grassland dynamics. Oxford University Press, New York, pp 69–80

    Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  • Gallardo A, Merino J (1992) Nitrogen immobilization in leaf litter at two Mediterranean ecosystems of SW Spain. Biogeochem 15:213–228

    Article  CAS  Google Scholar 

  • Giri SJ, Diefendorf AF, Lowell TV (2015) Origin and sedimentary fate of plant-derived terpenoids in a small river catchment and implications for terpenoids as quantitative paleovegetation proxies. Org Geochem 82:22–32

    Article  CAS  Google Scholar 

  • Gogou A, Stephanou GE (2004) Marine organic geochemistry of the Eastern Mediterranean: 2. Polar biomarkers in Cretan Sea surficial sediments. Mar Chem 85:1–25

    Article  CAS  Google Scholar 

  • Grewer DM, Lafrenière MJ, Lamoureux SF, Simpson MJ (2015) Potential shifts in Canadian High Arctic sedimentary organic matter composition with permafrost active layer detachments. Org Geochem 79:1–13

    Article  CAS  Google Scholar 

  • Harris D, Horwath WR, van Kessel C (2001) Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Soc Am J 65:1853–1856

    Article  CAS  Google Scholar 

  • Hartmann MA (1998) Plant sterols and the membrane environment. Trends Plant Sci 3:170–175

    Article  Google Scholar 

  • He D, Simoneit BRT, Jara B, Jaffé R (2015) Occurrence and distribution of monomethylalkanes in the freshwater wetland ecosystem of the Florida Everglades. Chemosphere 119:258–266

    Article  CAS  PubMed  Google Scholar 

  • Houser JN, Bierman DW, Burdis RM, Soeken-Gittinger LA (2010) Longitudinal trends and discontinuities in nutrients, chlorophyll, and suspended solids in the Upper Mississippi River: implications for transport, processing, and export by large rivers. Hydrobiol 651:127–144

    Article  CAS  Google Scholar 

  • Huang WY, Meinschen WG (1979) Sterols as ecological indicators. Geochim Cosmochim Acta 43:739–745

    Article  CAS  Google Scholar 

  • Huang X, Meyers PA, Wu W, Jia C, Xie S (2011) Significance of long chain iso and anteiso monomethyl alkanes in the Lamiaceae (mint family). Org Geochem 42:156–165

    Article  CAS  Google Scholar 

  • Hwang J, Druffel ERM, Komada T (2005) Transport of organic carbon from the California coast to the slope region: A study of Δ14C and δ13C signatures of organic compound classes. Glob Biogeochem Cycles 19:GB2018. doi:10.1029/2004GB002422

    Article  Google Scholar 

  • Ikan R, Baedecker MJ, Kaplan IR (1973) C18 isoprenoid ketone in recent marine sediments. Nature 244:154–155

    Article  CAS  Google Scholar 

  • Jaffé R, Mead R, Hernandez ME, Peralba MC, DiGuida OA (2001) Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study. Org Geochem 32:507–526

    Article  Google Scholar 

  • Jaffé R, Yamashita Y, Maie N, Cooper WT, Dittmar T, Dodds WK, Jones JB, Myoshi T, Ortiz-Zayas JR, Podgorski DC, Watanabe A (2012) Dissolved organic matter in headwater streams: compositional variability across climatic regions of North America. Geochim Cosmochim Acta 94:95–108

    Article  Google Scholar 

  • Knapp AK, Seastedt TR (1998) Grasslands, Konza Prairie, and long-term ecological research. In: Knapp AK, Briggs JM, Hartnett DC, Collins SL (eds) Grassland dynamics. Oxford University Press, New York, pp 3–15

    Google Scholar 

  • Komada T, Druffel ERM, Trumbore SE (2004) Oceanic export of relict carbon by small mountainous rivers. Geophys Res Lett 31:L07504. doi:10.1029/2004GL019512

    Article  Google Scholar 

  • Komada T, Druffel ERM, Hwang J (2005) Sedimentary rocks as sources of ancient organic carbon to the ocean: An investigation through Δ14C and δ13C signatures of organic compound classes. Glob Biogeochem Cycles 19:GB2017. doi:10.1029/2004GB002347

    Article  Google Scholar 

  • Laws EA, Bidigare RR, Popp BN (1997) Effect of growth rate and CO2 concentration on carbon isotopic fractionation by marine diatom Phaeodactylum tricurnutum. Limnol Oceanogr 42:1552–1560

    Article  CAS  Google Scholar 

  • Leithold E, Blair NE, Perkey DW (2006) Geomorphologic controls on the age of particulate organic carbon from small mountainous and upland rivers. Glob Biogeochem Cycles 20:GB3022. doi:10.1029/2005GB002677

    Article  Google Scholar 

  • Marty J, Planas D (2008) Comparison of methods to determine algal δ13C in freshwater. Limnol Oceanogr Methods 6:51–63

    Article  CAS  Google Scholar 

  • Mead R, Xu Y, Chong J, Jaffé R (2005) Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes. Org Geochem 36:363–370

    Article  CAS  Google Scholar 

  • Medeiros PM, Simoneit BRT (2007) Gas chromatography coupled to mass spectrometry for analyses of organic compounds and biomarkers as tracers for geological, environmental, and forensic research. J Sep Sci 30:1516–1536

    Article  CAS  PubMed  Google Scholar 

  • Medeiros PM, Simoneit BRT (2008) Multi-biomarker characterization of sedimentary organic carbon in small rivers draining the Northwestern United States. Org Geochem 39:52–74

    Article  CAS  Google Scholar 

  • Medeiros PM, Sikes EL, Thomas B, Freeman KH (2012) Flow discharge influence on input and transport of particulate and sedimentary organic carbon along a small temperate river. Geochim Cosmochim Acta 77:317–334

    Article  CAS  Google Scholar 

  • Meybeck M, Laroche L, Dürr HH, Syvitski JPM (2003) Global variability of daily total suspended solids and their fluxes in rivers. Glob Planet Change 39:65–93

    Article  Google Scholar 

  • Meyers P (1997) Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org Geochem 27:213–250

    Article  CAS  Google Scholar 

  • Milliman JD, Syvitski JMP (1992) Geomorphic/tectonic control of sediment transport to the ocean: the importance of small mountainous rivers. J Geol 100:525–544

    Article  Google Scholar 

  • Otto A, Simpson MJ (2005) Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada. Biogeochem 74:377–409

    Article  CAS  Google Scholar 

  • Peterson BJ, Wollheim WF, Mulholland PJ, Webster JR, Meyer JL, Tank JL, Martí E, Bowden WB, Valett HM, Hershey AE, McDowell WH, Dodds WK, Hamilton SK, Gregory S, Morrall DD (2001) Control of nitrogen export from watersheds by headwater streams. Sci 292:86–90

    Article  CAS  Google Scholar 

  • Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecol 136:261–269

    Article  Google Scholar 

  • Pisani O, Oros DR, Oyo-Ita OE, Ekpo BO, Jaffé R, Simoneit BRT (2013) Biomarkers in surface sediments from the Cross River and estuary system, SE Nigeria: assessment of organic matter sources of natural and anthropogenic origins. Appl Geochem 31:239–250

    Article  CAS  Google Scholar 

  • Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG (1998) Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim Acta 62:69–77

    Article  CAS  Google Scholar 

  • Rontani JF, Volkman JK (2003) Phytol degradation products as biogeochemical tracers in aquatic environments. Org Geochem 34:1–35

    Article  CAS  Google Scholar 

  • Rosemond AD, Benstead JP, Bumpers PM, Gulis V, Kominoski JS, Manning DWP, Suberkropp K, Wallace JB (2015) Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Sci 347:1142–1145

    Article  CAS  Google Scholar 

  • Saintilan N, Rogers K (2014) Woody plant encroachment of grasslands: a comparison of terrestrial and wetland settings. New Phytol. doi:10.1111/nph.13147

    Google Scholar 

  • Simoneit BRT (1986) Cyclic terpenoids of the geosphere. In: Johns RB (ed) Biological markers in the sedimentary record. Elsevier, New York, pp 43–99

    Google Scholar 

  • Simoneit BRT (2005) A review of current applications of mass spectrometry for biomarker/molecular tracer elucidations. Mass Spectrom Rev 24:719–765

    Article  CAS  PubMed  Google Scholar 

  • Smittenberg RH, Pancost RD, Hopmans EC, Paetzel M, Sinninghe Damsté JS (2004) A 400-year record of environmental change in an euxinic fjord as revealed by the sedimentary biomarker record. Palaeogeogr Palaeoclimatol Palaeoecol 202:331–351

    Article  Google Scholar 

  • Ten Haven HL, Peakman TM, Rullkötter J (1992) Early diagenetic transformation of higher-plant triterpenoids in deep-sea sediments from Baffin Bay. Geochim Cosmochim Acta 56:2001–2024

    Article  Google Scholar 

  • Trudeau V, Rasmussen JB (2003) The effects of water velocity on stable carbon and nitrogen isotope signatures of periphyton. Limnol Oceanogr 48:2194–2199

    Article  CAS  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Veach AM, Dodds WK, Skibbe A (2014) Fire and grazing influences on rates of riparian woody plant expansion along grassland streams. PLoS ONE 9:e106922

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkman JK, Maxwell JR (1986) Acyclic isoprenoids as biological markers. In: Johns RB (ed) Biological markers in the sedimentary record. Elseviere, New York, pp 1–42

    Google Scholar 

  • Volkman JK, Barrett SM, Blackburn SI, Mansour MP, Sikes EL, Gelin F (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179

    Article  CAS  Google Scholar 

  • Wedin DA, Tieszen LL, Dewey B, Pastor J (1995) Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76:1383–1392

    Article  Google Scholar 

  • Wraige EJ, Belt ST, Lewis CA, Cooke DA, Robert JM, Massé G, Rowland SJ (1997) Variations in structures and distributions of C25 highly branched isoprenoid (HBI) alkenes in cultures of the diatom, Haslea ostrearia (Simonsen). Org Geochem 27:497–505

    Article  CAS  Google Scholar 

  • Wynn JG, Bird MI (2007) C4-derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils. Glob Change Biol 13:1–12

    Article  Google Scholar 

  • Zegouagh Y, Derenne S, Largeau C, Bardoux G, Mariotti A (1998) Organic matter sources and early diagenetic alterations in Arctic surface sediments (Lena River delta and Laptev Sea, Eastern Siberia), II. Molecular and isotopic studies of hydrocarbons. Org Geochem 28:571–583

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was a collaborative initiative between the KNZ and FCE LTER (DEB-1237517) programs and funded in part through a supplement to the FCE-LTER. Additional funding was provided through the George Barley endowment to RJ. OP acknowledges the support through the FIU Graduate School for a Dissertation Year Fellowship during this study. We thank two anonymous reviewers and Dr. S. Findley for constructive comments which improved this manuscript. This is contribution number 755 from the Southeast Environmental Research Center at FIU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Jaffé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisani, O., Dodds, W.K. & Jaffé, R. Characterizing organic matter inputs to sediments of small, intermittent, prairie streams: a molecular marker and stable isotope approach. Aquat Sci 78, 343–354 (2016). https://doi.org/10.1007/s00027-015-0435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-015-0435-2

Keywords

Navigation