Skip to main content

Advertisement

Log in

Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Two water samples from the Great Dismal Swamp National Wildlife Refuge with high dissolved organic matter (DOM) concentrations (51 and 121 mg C L−1) were subjected to ultraviolet (UV) light for up to 110 days. During the course of the irradiations, 74–88 % of the original dissolved organic carbon was lost along with 95–99 % of the absorption at 300 nm. Based on changes observed during light exposure, three pools of DOM were identified: photo-labile, photo-refractory, and photo-produced compounds. Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to determine structural moieties characteristic to each of these pools. These analyses showed aromatic carbons were preferentially removed while carbohydrate-like and amide/peptide-like carbons were preserved during UV exposure. An increase in carbon normalized 13C NMR signal in the 0–50 ppm region suggests that alkyl moieties were produced, while FTIR signal at 1,745 cm−1 and two-dimensional 1H–13C NMR results confirmed the photochemical production of acetate. Several properties typically used to trace terrigenous DOM in ocean margin and marine environments were significantly altered. Optical properties, including absorption spectral slopes and fluorescence indices, as well as carbon-normalized lignin yields shifted from terrestrial values towards those more typical of coastal or open ocean samples. The loss of terrestrial signatures during irradiation highlights the difficulty faced when quantifying the contribution of terrigenous DOM to aquatic carbon pools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulla HAN, Minor EC, Dias RF, Hatcher PG (2010) Changes in the compound classes of dissolved organic matter along an estuarine transect: a study using FTIR and 13C-NMR. Geochim Cosmochim Acta 74:3815–3838. doi:10.1016/j.gca.2010.04.006

    CAS  Google Scholar 

  • Aluwihare LI, Repeta DJ, Pantoja S, Johnson CG (2005) Two chemically distinct pools of organic nitrogen accumulate in the ocean. Science 308(5724):1007–1010. doi:10.1126/science.1108925

    CAS  PubMed  Google Scholar 

  • Benner R, Pakulski JD, McCarthy M, Hedges JI, Hatcher PG (1992) Bulk chemical characterization of dissolved organic matter in the ocean. Science 255:1561–1564. doi:10.1126/science.255.5051.1561

    CAS  PubMed  Google Scholar 

  • Benner R, Benitz-Nelson B, Kaiser K, Amon RMW (2004) Export of young terrigenous dissolved organic carbon from rivers to the Arctic ocean. Geophys Res Lett 31:L05305. doi:10.1029/2003GL019251

    Google Scholar 

  • Bennet AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103:6951–6958

    Google Scholar 

  • Bertilsson S, Tranvik LJ (1998) Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr 43(5):885–895. doi:10.4319/lo.1998.43.5.0885

    CAS  Google Scholar 

  • Bertilsson S, Stepanauskas R, Cuadros-Hannson R, Graneli W, Wikner J, Tranvik L (1999) Photochemically induced changes in bioavailable carbon and nitrogen pools in boreal watersheds. Aquat Microb Ecol 19:47–56. doi:10.3354/ame019047

    Google Scholar 

  • Bianchi TS (2011) The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect. Proc Natl Acad Sci USA 108(49):19473–19481. doi:10.1073/pnas.1017982108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bianchi TS, Filley T, Dria K, Hatcher PG (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim Cosmochim Acta 68(5):959–967. doi:10.1016/j.gca.2003.07.011

    CAS  Google Scholar 

  • Birdwell JE, Engel AS (2010) Characterization of dissolved organic matter in cave and spring waters using UV-vis absorbance and fluorescence spectroscopy. Org Geochem 41:270–280. doi:10.1016/j.orggeochem.2009.11.002

    CAS  Google Scholar 

  • Birdwell JE, Valsaraj KT (2010) Characterization of dissolved organic matter in fogwater by excitation-emission matrix fluorescnece spectroscopy. Atmos Environ 44(27):3246–3253. doi:10.1016/j.atmosenv.2010.05.055

    CAS  Google Scholar 

  • Blough NV, Del Vecchio R (2002) Chromophoric DOM in the coastal environment. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp 508–545

    Google Scholar 

  • Bockman TM, Hubig SM, Kochi JK (1996) Direct observation of carbon–carbon bond cleavage in ultrafast decarboxylations. J Am Chem Soc 118:4502–4503. doi:10.1021/ja960112j

    CAS  Google Scholar 

  • Boehme J, Coble PG, Conmy R, Stovall-Leonard A (2004) Examining CDOM fluorescence variability using principal component analysis: seasonal and regional modeling of three-diminsional fluorescence in the Gulf of Mexico. Mar Chem 89:3–14. doi:10.1016/j.marchem.2004.03.019

    CAS  Google Scholar 

  • Burdige DJ, Kline SW, Chen W (2004) Fluorescent dissolved organic matter in marine sediment pore waters. Mar Chem 89:289–311. doi:10.1016/j.marchem.2004.02.015

    CAS  Google Scholar 

  • Chen M, Price RM, Yamashita Y, Jaffe′ R (2010) Comparative study of dissolved organic matter from groundwater in the Florida coastal Everglades using multi-dimensional spctrofluorometry combined with multivariate statistics. Appl Geochem 25:872–880. doi:10.1016/j.apgeochem.2010.03.005

    Google Scholar 

  • Chin Y-P, Aiken G, O’Loughlin EO (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28:1853–1858. doi:10.1021/es00060a015

    CAS  PubMed  Google Scholar 

  • Coble PG (1996) Characterisation of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar Chem 51:325–346. doi:10.1016/0304-4203(95)00062-3

    CAS  Google Scholar 

  • Coble PG (2007) Marine optical biogeochemistry: the chemistry of ocean color. Chem Rev 107(2):402–419. doi:10.1021/cr050350+

    CAS  PubMed  Google Scholar 

  • Coble PG, Del Castillo CE, Avril B (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res Part II 45(10–11):2195–2223. doi:10.1016/S0967-0645(98)00068-X

    CAS  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149. doi:10.1021/es0506962

    CAS  PubMed  Google Scholar 

  • Dagg M, Benner R, Lohrenz S, Lawrence D (2004) Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes. Cont Shelf Res 24:833–858. doi:10.1016/j.csr.2004.02.003

    Google Scholar 

  • Dalzell BJ, Minor EC, Mopper KM (2009) Photodegradation of estuarine dissolved organic matter: a multi-method assessment of DOM transformation. Org Geochem 40:243–257. doi:10.1016/j.orggeochem.2008.10.003

    CAS  Google Scholar 

  • Del Castillo CE, Coble PG, Morrell JM, Lopez JM, Corredor JE (1999) Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar Chem 66(1–2):35–51. doi:10.1016/S0304-4203(99)00023-7

    Google Scholar 

  • Del Vecchio R, Blough NV (2002) Photobleaching of chromophoric dissolved organic matter in natural waters: kinetics and modeling. Mar Chem 78:231–253. doi:10.1016/S0304-4203(02)00036-1

    Google Scholar 

  • Del Vecchio R, Blough NV (2004a) On the origin of the optical properties of humic substances. Environ Sci Technol 38:3885–3891. doi:10.1021/es049912h

    PubMed  Google Scholar 

  • Del Vecchio R, Blough NV (2004b) Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight. Mar Chem 89:169–187. doi:10.1016/j.marchem.2004.02.027

    Google Scholar 

  • Del Vecchio R, Subramaniam A (2004) Influence of the Amazon River on the surface optical properties of the western tropical North Atlantic Ocean. J Geophys Res 109:C11001. doi:10.1029/2004JC002503

    Google Scholar 

  • Deuser W (1988) Whither organic carbon? Nature 332:396–397. doi:10.1038/332396a0

    Google Scholar 

  • Dittmar T, Whitehead K, Minor EC, Koch BP (2007) Tracing terrigeneous dissolved organic matter and its photochemical decay in the ocean by using liquid chromatography/mass spectrometry. Mar Chem 107(3):378–387

    CAS  Google Scholar 

  • Dixon WT (1982) Spinning-sideband-free and spinning-sideband-only NMR spectra in spinning samples. J Chem Phys 77:1800–1809. doi:10.1063/1.444076

    CAS  Google Scholar 

  • Druffel ERM, Williams PM, Robertson K, Griffin S, Jull A, Donahue D, Toolin L, Linick TW (1989) Radiocarbon in dissolved organic and inorganic carbon from the central North Pacific. Radiocarbon 31(3):523–532

    Google Scholar 

  • Eglinton G, Hamilton RJ (1963) The distribution of alkanes. In: Swain T (ed) Chemical plant taxonomy. Academic Press

  • Faust BC, Zepp RG (1993) Photochemistry of aqueous iron (III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ Sci Technol 27:2517–2522

    CAS  Google Scholar 

  • Fichot CG, Benner R (2012) The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigeneous dissolved organic carbon in river-influenced ocean margins. Limnol Oceanogr 57 (in press)

  • Goldstone JV, Voelker BM (2000) Chemistry of superoxide radical in seawater: CDOM associated sink of superoxide in coastal waters. Environ Sci Technol 34:1043–1048. doi:10.1021/es9905445

    CAS  Google Scholar 

  • Goldstone JV, Pullin MJ, Bertilsson S, Voelker BM (2002) Reactions of hydroxyl radical with humic substances: bleaching, mineralization, and production of bioavailable carbon substrates. Environ Sci Technol 36:364–372. doi:10.1021/es0109646

    CAS  PubMed  Google Scholar 

  • Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

    CAS  PubMed  Google Scholar 

  • Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39(8):1903–1916

    Google Scholar 

  • Green FI, Highley TL (1997) Mechanism of brown-rot decay: paradigm or paradox. Int Biodeterior Biodegrad 39(2–3):113–124

    CAS  Google Scholar 

  • Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectroscopy. Wiley Interscience, New Jersey

    Google Scholar 

  • Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gab between terrestrial and aquatic ecology. Ecology 91(10):2850–2861

    PubMed  Google Scholar 

  • Hatcher PG (1987) Chemical structural studies of natural lignin by dipolar dephasing solid-state 13C nuclear magnetic resonance. Org Geochem 11:31–39. doi:10.1016/0146-6380(87)90049-0

    CAS  Google Scholar 

  • Hedges JI, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54:174–178. doi:10.1021/ac00239a007

    CAS  Google Scholar 

  • Hedges JI, Hatcher PG, Ertel JR, Meyers-Schulte KJ (1992) A comparison of dissolved humic substances from seawater with Amazon River counterparts by 13C-NMR spectrometry. Geochim Cosmochim Acta 56:1753–1757. doi:10.1016/0016-7037(92)90241-A

    CAS  Google Scholar 

  • Helms JR, Stubbins A, Ritchie J, Minor EC, Kieber DJ, Mopper K (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53(3):955–969. doi:10.4319/lo.2008.53.3.0955

    Google Scholar 

  • Helms JR, Mao J, Schmidt-Rohr K, Abdulla H, Mopper K (2013a) Photochemical flocculation of terrestrial dissolved organic matter and iron. Geochim Cosmochim Acta 121:398–413

    CAS  Google Scholar 

  • Helms JR, Stubbins A, Perdue EM, Green NW, Chen H, Mopper K (2013b) Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. Mar Chem 155:81–91. doi:10.1016/j.marchem.2013.05.015

    CAS  Google Scholar 

  • Hernes PJ, Benner R (2002) Transport and diagenesis of dissolved and particulate terrigenous organic matter in the North Pacific Ocean. Deep-Sea Res Part I 49:2119–2132. doi:10.1016/S0967-0637(02)00128-0

    CAS  Google Scholar 

  • Hernes PJ, Benner R (2003) Photochemical and microbial degradation of dissolved lignin phenol: Implications for the fate of terrigenous dissolved organic matter in marine environments. J Geophys Res Ocean. doi:10.1029/2002JC001421

    Google Scholar 

  • Hernes PJ, Benner R (2006) Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans. Mar Chem 100:66–79. doi:10.1016/j.marchem.2005.11.003

    CAS  Google Scholar 

  • Hernes PJ, Bergamaschi BA, Eckard RS, Spencer RGM (2009) Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J Geophys Res: Biogeosciences 114(G4):G00F03. doi:10.1029/2009JG000938

  • Hockaday WC, Grannas AM, Kim S, Hatcher PG (2006) Direct molecular evidence for the degradation and mobility of black carbon in soils from ultrahigh-resolution mass spectral analysis of dissolved organic matter from a fire-impacted forest soil. Org Geochem 37:501–510. doi:10.1016/j.orggeochem.2005.11.003

    CAS  Google Scholar 

  • Hopmans EC, Weijers JWH, Schefu E, Herfort L, Sinninghe Damste JS, Schouten S (2004) A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett 224(1–2):107–116. doi:10.1016/j.epsl.2004.05.012

    CAS  Google Scholar 

  • Huguet A, Vacher L, Relexans S, Saubusse S, Froidefond JM, Parlanti E (2009) Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org Geochem 40:706–719. doi:10.1016/j.orggeochem.2009.03.002

    CAS  Google Scholar 

  • Jørgensen L, Stedmon CA, Kragh T, Markager S, Middelboe M, Sondergaard M (2011) Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar Chem 126:129–148. doi:10.1016/j.marchem.2011.05.002

    Google Scholar 

  • Kalbitz K, Geyer W, Geyer S (1999) Spectroscopic properties of dissolved humic substances: a reflection of land use history in a fen area. Biogeochem 47(2):219–238. doi:10.1007/BF00994924

    CAS  Google Scholar 

  • Kalbitz K, Schwesig D, Schmerwitz J, Kaiser K, Haumaier L, Glaser B, Ellerbrock R, Leinweber P (2003) Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biol Biochem 35:1129–1142. doi:10.1016/S0038-0717(03)00165-2

    CAS  Google Scholar 

  • Kieber RJ, Zhou X, Mopper K (1990) Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: fate of riverine carbon in the sea. Limnol Oceanogr 35:1503–1515. doi:10.1021/es00080a003

    CAS  Google Scholar 

  • Kieber RJ, Willey JD, Whitehead RF, Reid SN (2007) Photobleaching of chromophoric dissolved organic matter (CDOM) in rainwater. J Atmos Chem 58:219–235. doi:10.1007/s10874-007-9089-3

    CAS  Google Scholar 

  • Kourafalou VH, Oey L-Y, Wang JD, Lee TN (1996) The fate of river discharge on the continental shelf 1. Modeling the river plume and the inner shelf coastal current. J Geophys Res 101(C2):3415–3434. doi:10.1029/95JC03024

    Google Scholar 

  • Kowalczuk P, Cooper WJ, Whitehead RF, Durako MJ, Sheldon W (2003) Characterization of CDOM in an organic rich river and surrounding coastal ocean in the South Atlantic Bight. Aquat Sci 65:381–398. doi:10.1007/s00027-003-0678-1

    Google Scholar 

  • Kujawinski EB, Del Vecchio R, Blough NV, Klein GC, Marshall AG (2004) Probing molecular-level transformations of dissolved organic matter: insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 92:23–37. doi:10.1016/j.marchem.2004.06.038

    CAS  Google Scholar 

  • Kulovaara M, Corin N, Backlund P, Tervo J (1996) Impact of UV254 radiation on aquatic humic substances. Chemosphere 33(5):783–790. doi:10.1016/0045-6535(96)00233-0

    CAS  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New York

    Google Scholar 

  • Lee Z, Hu C, Shang S, Du K, Lewis M, Arnone R, Brewin R (2013) Penetration of UV–visible solar radiation in the global oceans: insights from ocean color remote sensing. J Geophys Res: Oceans 118:1–15. doi:10.1002/jgrc.20308

    Google Scholar 

  • Leifer A (1988) The kinetics of environmental aquatic photochemistry: theory and practice. American Chemical Society, Washington DC

    Google Scholar 

  • Loiselle SA, Bracchini L, Datillo AM, Ricci M, Tognazzi A, Cozar A, Rossi C (2009) Optical characterization of chromophoric dissolved organic matter using wavelength distribution of absorption spectral slopes. Limnol Oceanogr 54(2):590–597. doi:10.4319/lo.2009.54.2.0590

    CAS  Google Scholar 

  • Ma J, Del Vecchio R, Golanoski K, Boyle E, Blough NV (2010) Optical properties of humic substances and CDOM: effects of borohydride reduction. Environ Sci Technol 44(14):5395–5402. doi:10.1021/es100880q

    CAS  PubMed  Google Scholar 

  • Maie N, Yang C-Y, Miyoshi T, Parish K, Jaffe′ R (2005) Chemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystem. Limnol Oceanogr 50:23–35

    CAS  Google Scholar 

  • Maie N, Scully NM, Pisani O, Jaffe′ R (2007) Compostion of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res 41:563–570

    CAS  PubMed  Google Scholar 

  • Mao J-D, Schmidt-Rohr K (2003) Recoupled long-range C–H dipolar dephasing in solid-state NMR, and its use for selection of fused aromatic rings. J Magn Reson 162(1):217–227. doi:10.1016/S1090-7807(03)00012-0

    CAS  PubMed  Google Scholar 

  • Mao J-D, Schmidt-Rohr K (2004) Separation of aromatic-carbon 13C NMR signals from di-oxygen alkyl bands by a chemical-shift-anisotropy filter. Solid State Nucl Magn Reson 26:36–45. doi:10.1016/j.ssnmr.2003.09.003

    CAS  PubMed  Google Scholar 

  • Mao J-D, Hu W-G, Ding G-W, Schmidt-Rohr K, Davies G, Ghabbour EA, Xing B (2002) Suitability of different 13C solid-state NMR techniques in the characterization of humic acids. Intern J Environ Anal Chem 82(4):183–196

    CAS  Google Scholar 

  • Mao J-D, Cory RM, McKnight DM, Schmidt-Rohr K (2007) Characterization of a nitrogen-rich fulvic acid and its precursor algae from solid state NMR. Org Geochem 38(8):1277–1292. doi:10.1016/j.orggeochem.2007.04.005

    CAS  Google Scholar 

  • Mao J-D, Chen N, Cao X (2011) Characterization of humic substances by advanced solid state NMR spectroscopy: demonstration of a systematic approach. Org Geochem 42(8):891–902. doi:10.1016/j.orggeochem.2011.03.023

    CAS  Google Scholar 

  • Mao J-D, Johnson RL, Lehmann J, Olk DC, Neves EG, Thompson ML, Schmidt-Rohr K (2012) Abundant and stable char in soil: implications for soil fertility and carbon sequestration. Environ Sci Technol 46:9571–9576

    CAS  PubMed  Google Scholar 

  • McCallister SL, Bauer JE, Ducklow HW, Canuel EA (2006) Sources of estuarine dissolved and particulate organic matter: a multi-tracer approach. Org Geochem 37(4):454–468. doi:10.1016/j.orggeochem.2005.12.005

    CAS  Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofuorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46(1):38–48. doi:10.4319/lo.2001.46.1.0038

    CAS  Google Scholar 

  • Meyers-Schulte KJ, Hedges JI (1986) Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature 321:61–64. doi:10.1038/321061a0

    CAS  Google Scholar 

  • Miller WL, Moran MA (1997) Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol Oceanogr 42(6):1317–1324. doi:10.4319/lo.1997.42.6.1317

    CAS  Google Scholar 

  • Miller WL, Zepp RG (1995) Photochemical production of dissolved inorganic carbon from terrestrial organic matter: significance to the oceanic organic carbon cycle. Geophys Res Lett 22:417–420. doi:10.1029/94GL03344

    CAS  Google Scholar 

  • Minor EC, Pothen J, Dalzell BJ, Abdulla H, Mopper K (2006) Effects of salinity changes on the photodegradation and ultraviolet–visible absorbance of terrestrial dissolved organic matter. Limnol Oceanogr 51(5):2181–2186. doi:10.4319/lo.2006.51.5.2181

    CAS  Google Scholar 

  • Minor EC, Dalzell BJ, Stubbins A, Mopper K (2007) Evaluating the photoalteration of estuarine dissolved organic matter using direct temperature-resolved mass spectrometry and UV–visible spectroscopy. Aquat Sci 69:440–455. doi:10.1007/s00027-007-0897-y

    CAS  Google Scholar 

  • Moore WS, Sarmiento JL, Key RM (1986) Tracing the amazon component of surface Atlantic water using 228Ra, salinity, and silica. J Geophys Res 91(C2):2574–2580. doi:10.1029/JC091iC02p02574

    Google Scholar 

  • Mopper K, Stahovec WL (1986) Sources and sinks of low molecular weight organic carbonyl compounds in seawater. Mar Chem 19:305–321. doi:10.1016/0304-4203(86)90052-6

    CAS  Google Scholar 

  • Moran MA, Sheldon WM, Zepp RG (2000) Carbon loss and optical property changes during long term photochemical and biological degradation of estuarine organic matter. Limnol Oceanogr 45(6):1254–1264. doi:10.4319/lo.2000.45.6.1254

    CAS  Google Scholar 

  • Nelson NB, Siegel DA (2002) Chromophoric DOM in the open ocean. In: Hansell DA, Carlson CA (eds) Biogeochemistry of marine dissolved organic matter. Academic Press, San Diego, pp 547–578

    Google Scholar 

  • Nelson NB, Siegel DA, Carlson CA, Swan C, Smethie WM Jr, Khatiwala S (2007) Hydrography of chromophoric dissolved organic matter in the North Atlantic. Deep-Sea Res Part I 54:710–731. doi:10.1016/j.dsr.2007.02.006

    CAS  Google Scholar 

  • Opella SJ, Frey MH (1979) Selection of nonprotonated carbon resonances in solid state nuclear magnetic resonance. J Am Chem Soc 101(19):5854–5856. doi:10.1021/ja00513a079

    CAS  Google Scholar 

  • Opsahl S, Benner R (1997) Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 386(6624):480–482. doi:10.1038/386480a0

    CAS  Google Scholar 

  • Opsahl S, Benner R (1998) Photochemical reactivity of dissolved lignin in river and ocean waters. Limnol Oceanogr 43(6):1297–1304. doi:10.4319/lo.1998.43.6.1297

    CAS  Google Scholar 

  • Ortega-Retuerta E, Reche I, Pulido-Villena E, Austi S, Duarte C (2010) Distribution and photoreactivity of chromophoric dissolved organic matter in the Antarctic Peninsula (Southern Ocean). Mar Chem 118:129–139. doi:10.1016/j.marchem.2009.11.008

    CAS  Google Scholar 

  • Osburn CL, Morris DP, Thorn KA, Moeller RE (2001) Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation. Biogeochemistry 54(3):251–278. doi:10.1023/A:1010657428418

    CAS  Google Scholar 

  • Osburn CL, Wigdahl CR, Fritz SC, Saros JE (2011) Dissolved organic matter composition and photoreactivity in prairie lakes of the US Great Plains. Limnol Oceanogr 56(6):2371–2390. doi:10.4319/lo.2011.56.6.2371

    CAS  Google Scholar 

  • Para J, Coble PG, Charriere B, Tedetti M, Fontana C, Sempere R (2010) Fluorescence and absorption properties of chromophoric dissolved organic matter CDOM in coastal surface waters of the northwestern Mediterranean Sea, influence of the Rhone River. Biogeosciences 7:4083–4103. doi:10.5194/bg-7-4083-2010

    CAS  Google Scholar 

  • Reche I, Pace ML, Cole JJ (2000) Modeled effects of dissolved organic carbon and solar spectra on photobleaching in lake ecosystems. Ecosystems 3:419–432. doi:10.1007/s100210000038

    CAS  Google Scholar 

  • Riemer DD, Milne PJ, Zika RG, Pos WH (2000) Photoproduction of nonmethane hydrocarbons (NMHCs) in seawater. Mar Chem 71(3–4):177–198. doi:10.1016/S0304-4203(00)00048-7

    CAS  Google Scholar 

  • Rodriguez-Zúñiga U, Milori D, Da Silva W, Oliveira L, Rocha J (2008) Changes in optical properties caused by UV-irradiation of aquatic humic substances from the Amazon River basin: seasonal variability evaluation. Environ Sci Technol 42:1948–1953. doi:10.1021/es702156n

    PubMed  Google Scholar 

  • Romera-Castillo C, Sarmento H, Alverez-Salgado XA, Gasol JM, Marrase C (2011) Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplonkton exudates. Appl Environ Microbiol 77(21):7490–7498. doi:10.1128/AEM.00200-11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarpal RS, Mopper K, Kieber DJ (1995) Absorbance properties of dissoved organic matter in Antarctic sea water. Antarct J US 30:139–140

    Google Scholar 

  • Schmitt-Kopplin P, Hertkorn N, Schulten H-R, Kettrup A (1998) Structural changes in a dissolved soil humic acid during photochemical degradation processes under O2 and N2 atmosphere. Environ Sci Technol 32:2531–2541. doi:10.1021/es970636z

    CAS  Google Scholar 

  • Scully NM, Maie N, Daily SK, Boyer JN, Jones RD, Jaffe′ R (2004) Early diagenesis of plant-derived dissolved organic matter along a wetland, mangrove, estuary ecotone. Limnol Oceanogr 49(5):1667–1678

    CAS  Google Scholar 

  • Sleighter RL, Hatcher PG (2008) Molecular characterization of dissolved organic matter (DOM) along a river to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar Chem 110:140–152. doi:10.1016/j.marchem.2008.04.008

    CAS  Google Scholar 

  • Spencer RGM, Stubbins A, Hernes PJ, Baker A, Mopper K, Aufdenkampe AK, Dyda RY, Mwamba VL, Mangangu AM, Wabeakanghanzi JN, Six J (2009) Photochemical degradation of dissolved organic matter and dissolved lignin phenols from the Congo River. J Geophys Res 114:G03010. doi:10.1029/2009JG000968

    Google Scholar 

  • Spencer RGM, Aiken GR, Dyda RY, Butler KD, Bergamaschi BA, Hernes PJ (2010a) Comparison of XAD with other dissolved lignin isolation echniques and a compilation of analytical improvements for the analysis of lignin in aquatic settings. Org Geochem 41:445–453. doi:10.1016/j.orggeochem.2010.02.004

    CAS  Google Scholar 

  • Spencer RGM, Hernes PJ, Ruf R, Baker A, Dyda RY, Stubbins A, Six J (2010b) Temporal controls on dissolved organic matter and lignin biogeochemistry in a pristine tropical river Democratic Republic of Congo. J Geophys Res Biogeosci 115:G03013. doi:10.1029/2009JG001180

    Google Scholar 

  • Spencer RGM, Aiken GR, Dornblaser MM, Butler KD, Holmes RM, Fiske G, Mann PJ, Stubbins A (2013) Chromophoric dissolved organic matter export from US Rivers. Geophys Res Lett 40(8):1575–1579. doi:10.1002/grl.50357

    CAS  Google Scholar 

  • Stedmon CA, Osburn CL, Kragh T (2010) Tracing water mass mixing in the Baltic-North Sea transition zone using the optical properties of coloured dissolved organic matter. Estuar Coast Shelf Sci 87(1):156–162. doi:10.1016/j.ecss.2009.12.022

    CAS  Google Scholar 

  • Stedmon CA, Amon RMW, Rinehart AJ, Walker SA (2011) The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: pan Arctic trends and differences. Mar Chem 124:108–118. doi:10.1016/j.marchem.2010.12.007

    CAS  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: Genesis, composition, and reactions. Wiley, New York

    Google Scholar 

  • Stubbins A, Dittmar T (2012) Low volume quantification of dissolved organic carbon and dissolved nitrogen. Limnol Oceanogr: Methods 10:347–352. doi:10.4319/lom.2012.10.347

    CAS  Google Scholar 

  • Stubbins A, Hubbard V, Uher G, Law CS, Upstill-Goddard RC, Aiken GR, Mopper K (2008) Relating carbon monoxide photoproduction to dissolved organic matter functionality. Environ Sci Technol 42(9):3271–3276. doi:10.1021/es703014q

    CAS  PubMed  Google Scholar 

  • Stubbins A, Spencer RGM, Chen H, Hatcher PG, Mopper K, Hernes PJ, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J (2010) Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol Oceanogr 55(4):1467–1477. doi:10.4319/lo.2010.55.4.1467

    CAS  Google Scholar 

  • Stubbins A, Niggemann J, Dittmar T (2012) Photo-lability of deep ocean dissolved black carbon. Biogeosciences 9:1661–1670. doi:10.519/bg-9-1661-2012

    CAS  Google Scholar 

  • Sulzberger B, Durisch-Kaiser E (2009) Chemical characterization of dissolved organic matter (DOM): a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat Sci 71(2):104–126. doi:10.1007/s00027-008-8082-5

    CAS  Google Scholar 

  • Thorn KA, Younger SJ, Cox LG (2010) Order of functionality loss during photodegradation of aquatic humic substances. J Environ Qual 39(4):1416–1428. doi:10.2134/jeq 2009.0408

    CAS  PubMed  Google Scholar 

  • Vähätalo AV, Wetzel RG (2004) Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures. Mar Chem 89:313–326. doi:10.1016/j.marchem.2004.03.010

    Google Scholar 

  • Vähätalo AV, Wetzel RG, Paerl HW (2005) Light absorption by phytoplankton and chromophoric dissolved organic matter in the drainage basin and estuary of the Neuse River, North Carolina (USA). Freshw Biol 50(3):477–493. doi:10.1111/j.1365-2427.2004.01335.x

    Google Scholar 

  • Vodacek A, Blough NV, DeGrandpre MD, Peltzer ET, Nelson RK (1997) Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photooxidation. Limnol Oceanogr 42:674–686. doi:10.4319/lo.1997.42.4.0674

    CAS  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708. doi:10.1021/es030360x

    CAS  PubMed  Google Scholar 

  • Wetzel RG, Hatcher PG, Bianchi TS (1995) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40(8):1369–1380. doi:10.4319/lo.1995.40.8.1369

    CAS  Google Scholar 

  • White EM, Kieber DJ, Mopper K (2008) Determination of photochemically produced carbon dioxide in seawater. Limnol Oceanogr: Methods 6:441–453. doi:10.4319/lom.2008.6.441

    CAS  Google Scholar 

  • Williams PM, Druffel ERM (1987) Radiocarbon in dissolved organic matter in the central North Pacific Ocean. Nature 330:246–248. doi:10.1038/330246a0

    CAS  Google Scholar 

  • Yamashita Y, Tanoue E (2003a) Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar Chem 82:255–271. doi:10.1016/S0304-4203(03)00073-2

    CAS  Google Scholar 

  • Yamashita Y, Tanoue E (2003b) Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar Chem 82:145–160. doi:10.1016/S0304-4203(03)00049-5

    CAS  Google Scholar 

  • Yamashita Y, Nosaka Y, Suzuki K, Ogawa H, Takahashi K, Saito H (2013) The photobleaching as a factor controlling spectral characteristics of chromophoric dissolved organic matter in open ocean. Biogeosciences Discussions 10:9989–10019

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank David Burdige for the use of the spectrofluorometer, Patrick Hatcher for the use of the TOC analyzer and freeze-dryer, and Hongmei Chen for assistance with TOC measurements. Hussain Abdulla assisted with FTIR data treatment. Rachael Dyda provided lignin measurements. Patrick Hatcher, Richard Zimmerman, and Hussain Abdulla provided helpful comments on an early version of this manuscript. This research was supported by National Science Foundation grant OCE-0728634.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John R. Helms, Jingdong Mao or Kenneth Mopper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helms, J.R., Mao, J., Stubbins, A. et al. Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching. Aquat Sci 76, 353–373 (2014). https://doi.org/10.1007/s00027-014-0340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-014-0340-0

Keywords

Navigation