Skip to main content
Log in

Water renewal along the aquatic continuum offsets cumulative retention by lakes: implications for the character of organic carbon in boreal lakes

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The character of organic carbon (OC) in lake waters is strongly dependent on the time water has spent in the landscape as well as in the lake itself due to continuous biogeochemical OC transformation processes. A common view is that upstream lakes might prolong the water retention in the landscape, resulting in an altered OC character downstream. We calculated the number of lakes upstream for 24,742 Swedish lakes in seven river basins spanning from 56º to 68º N. For each of these lakes, we used a lake volume to discharge comparison on a landscape scale to account for upstream water retention by lakes (Tn tot). We found a surprisingly weak relationship between the number of lakes upstream and Tn tot. Accordingly, we found that the coloured fraction of organic carbon was not related to lake landscape position but significantly related to Tn tot when we analysed lake water chemical data from 1,559 lakes in the studied river basins. Thus, we conclude that water renewal along the aquatic continuum by lateral water inputs offsets cumulative retention by lakes. Based on our findings, we suggest integrating Tn tot in studies that address lake landscape position in the boreal zone to better understand variations in the character of organic carbon across lake districts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ågren A, Buffam I, Bishop K, Laudon H (2010) Modelling stream dissolved organic carbon concentrations during spring flood in the boreal forest: a simple empirical approach for regional predictions. J Geophys Res 115(G1):G01012

    Article  Google Scholar 

  • Alexander R, Boyer E, Smith R, Schwarz G, Moore R (2007) The role of headwater streams in downstream water quality. JAWRA J Am Water Res Assoc 43(1):41–59

    Article  CAS  Google Scholar 

  • Algesten G, Sobek S, Bergström A-K, Ågren A, Tranvik LJ, Jansson M (2004) Role of lakes for organic carbon cycling in the boreal zone. Glob Chang Biol 10(1):141–147. doi:10.1111/j.1365-2486.2003.00721.x

    Article  Google Scholar 

  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, Del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4(9):593–596

    Article  CAS  Google Scholar 

  • Battin T, Luyssaert S, Kaplan L, Aufdenkampe A, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2(9):598–600

    Article  CAS  Google Scholar 

  • Bolin B, Rodhe H (1973) A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 25(1):58–62

    Article  Google Scholar 

  • Canham CD, Pace ML (2009) A spatially explicit, mass-balance analysis of watershed-scale controls on lake chemistry. Real World Ecology. In: Miao S, Carstenn S, Nungesser M (eds). Springer New York, pp 209–233. doi:10.1007/978-0-387-77942-3_8

  • Cole J, Prairie Y, Caraco N, McDowell W, Tranvik LJ, Striegl R, Duarte C, Kortelainen P, Downing J, Middelburg J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185

    Article  Google Scholar 

  • Egeberg PK, Eikenes M, Gjessing ET (1999) Organic nitrogen distribution in NOM size classes. Environ Int 25(2–3):225–236. doi:10.1016/s0160-4120(98)00101-9

    Article  CAS  Google Scholar 

  • Findlay S, Sinsabaugh R (2003) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, Boston

    Google Scholar 

  • Goodman KJ, Baker MA, Wurtsbaugh WA (2011) Lakes as buffers of stream dissolved organic matter (DOM) variability: Temporal patterns of DOM characteristics in mountain stream-lake systems. J Geophys Res-Biogeosci 116. doi:10.1029/2011jg001709

  • Göransson E, Johnson RK, Wilander A (2004) Representativity of a mid-lake surface water chemistry sample. Environ Monit Assess 95(1):221–238

    Article  PubMed  Google Scholar 

  • Hecky R, Campbell P, Hendzel L (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans. Limnol Oceanogr 38(4):709–724

    Article  CAS  Google Scholar 

  • Hu CM, Muller-Karger FE, Zepp RG (2002) Absorbance, absorption coefficient, and apparent quantum yield: a comment on common ambiguity in the use of these optical concepts. Limnol Oceanogr 47(4):1261–1267

    Google Scholar 

  • Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, UK

    Book  Google Scholar 

  • Kling GW, Kipphut GW, Miller MM, O’Brien WJ (2000) Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshw Biol 43(3):477–497. doi:10.1046/j.1365-2427.2000.00515.x

    Article  Google Scholar 

  • Köhler B, von Wachenfeldt E, Kothawala D, Tranvik LJ (2012) Reactivity continuum of dissolved organic carbon decomposition in lake water. J Geophys Res-Biogeosci 117. doi:10.1029/2011JG001793

  • Kratz T, Webster K, Bowser C, Maguson J, Benson B (1997) The influence of landscape position on lakes in northern Wisconsin. Freshw Biol 37(1):209–217. doi:10.1046/j.1365-2427.1997.00149.x

    Article  Google Scholar 

  • Larson JH, Frost PC, Zheng ZY, Johnston CA, Bridgham SD, Lodge DM, Lamberti GA (2007) Effects of upstream lakes on dissolved organic matter in streams. Limnol Oceanogr 52(1):60–69

    Article  CAS  Google Scholar 

  • Lindström G, Bergström S (2004) Runoff trends in Sweden 1807–2002. Hydrol Sci J/Journal des Sciences Hydrologiques 49(1):69–83

    Article  Google Scholar 

  • Lindström G, Johansson B, Persson M, Gardelin M, Bergström S (1997) Development and test of the distributed HBV-96 hydrological model. J Hydrol 201(1–4):272–288. doi:10.1016/s0022-1694(97)00041-3

    Article  Google Scholar 

  • Martin S, Soranno P (2006) Lake landscape position: relationships to hydrologic connectivity and landscape features. Limnol Oceanogr 51(2):801–814

    Article  CAS  Google Scholar 

  • McDonnell J, McGuire K, Aggarwal P, Beven K, Biondi D, Destouni G, Dunn S, James A, Kirchner J, Kraft P (2010) How old is stream water? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrol Process 24(12):1745–1754

    Article  Google Scholar 

  • McGuire K, McDonnell J, Weiler M, Kendall C, McGlynn B, Welker J, Seibert J (2005) The role of topography on catchment-scale water residence time. Water Resour Res 41(5):W05002

    Article  Google Scholar 

  • Meili M (1992) Sources, concentrations and characteristics of organic matter in soft water lakes and streams of the Swedish forest region. Hydrobiologia 229(1):23–41

    Article  CAS  Google Scholar 

  • Monsen NE, Cloern JE, Lucas LV, Monismith SG (2002) A comment on the use of water residence time, residence time, and age as transport time scales. Limnol Oceanogr 47(5):1545–1553

    Article  Google Scholar 

  • Morris DP, Hargreaves BR (1997) The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol Oceanogr 42(2):239–249

    Article  CAS  Google Scholar 

  • Sadro S, Nelson CE, Melack JM (2012) The Influence of landscape position and catchment characteristics on aquatic biogeochemistry in high-elevation lake-chains. Ecosystems 15(3):363–386. doi:10.1007/s10021-011-9515-x

    Article  CAS  Google Scholar 

  • Schindler DW, Bayley SE, Curtis PJ, Parker BR, Stainton M, Kelly C (1992) Natural and man-caused factors affecting the abundance and cycling of dissolved organic substances in Precambrian shield lakes. Hydrobiologia 229(1):1–21

    Article  CAS  Google Scholar 

  • Schindler DW, Bayley SE, Parker BR, Beaty KG, Cruikshank D, Fee E, Schindler E, Stainton M (1996) The effects of climatic warming on the properties of boreal lakes and streams at the experimental Lakes area, north-western Ontario. Limnol Oceanogr 41(5):1004–1017

    Article  CAS  Google Scholar 

  • Schindler DW, Curtis PJ, Bayley SE, Parker BR, Beaty KG, Stainton MP (1997) Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36(1):9–28. doi:10.1023/a:1005792014547

    Article  CAS  Google Scholar 

  • Sobek S, Nisell J, Fölster J (2011) Predicting the depth and volume of lakes from map-derived parameters. Inland Waters 1(3):177–184

    Google Scholar 

  • Soranno PA, Webster KE, Riera JL, Kratz TK, Baron JS, Bukaveckas PA, Kling GW, White DS, Caine N, Lathrop RC, Leavitt PR (1999) Spatial variation among lakes within landscapes: ecological organization along lake chains. Ecosystems 2(5):395–410. doi:10.1007/s100219900089

    Article  CAS  Google Scholar 

  • Soranno PA, Cheruvelil KS, Webster KE, Bremigan MT, Wagner T, Stow CA (2010) Using landscape limnology to classify freshwater ecosystems for multi-ecosystem management and conservation. Bioscience 60(6):440–454. doi:10.1525/bio.2010.60.6.8

    Article  Google Scholar 

  • Steinberg C (2003) Ecology of humic substances in freshwaters: determinants from geochemistry to ecological niches. Springer, New York

    Book  Google Scholar 

  • Sulzberger B, Durisch-Kaiser E (2009) Chemical characterization of dissolved organic matter (DOM): a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat Sci 71(2):104–126. doi:10.1007/s00027-008-8082-5

    Article  CAS  Google Scholar 

  • Tokunaga E (2003) Tiling properties of drainage basins and their physical bases. In: Evans IS, Dikau R, Tokunaga E, Ohmori H, Hirano M (eds) Concepts and modelling in geomorphology: International perspectives. TERRAPUB, Tokyo, pp 147–166

    Google Scholar 

  • Tranvik LJ (1998) Degradation of dissolved organic matter in humic waters by bacteria. In: Hessen DO, Tranvik LJ (eds) Aquatic humic substances: ecology and biogeochemistry. Ecological studies, vol 133. Springer, New York, pp 259–283

    Chapter  Google Scholar 

  • Tranvik LJ, Downing J, Cotner J, Loiselle S, Striegl R, Ballatore T, Dillon P, Finlay K, Fortino K, Knoll L (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6):2298–2314

    Article  CAS  Google Scholar 

  • Vähätalo AV, Wetzel RG (2004) Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months–years) exposures. Mar Chem 89(1–4):313–326. doi:10.1016/j.marchem.2004.03.010

    Article  Google Scholar 

  • Vollenweider RA (1976) Advances in defining critical loading levels of phosphorus in Lake Eutrophication. Memorie dell’Istituto Italiano di Idrobiologia Dott Marco de Marchi 33:53–83

    CAS  Google Scholar 

  • von Wachenfeldt E, Tranvik LJ (2008) Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11(5):803–814

    Article  CAS  Google Scholar 

  • Wetzel R (2001) Limnology: lake and river ecosystems, vol 1006. Academic Press, San Diego

    Google Scholar 

  • Weyhenmeyer GA, Fröberg M, Karltun E, Khalili M, Kothawala D, Temnerud J, Tranvik LJ (2012) Selective decay of terrestrial organic carbon during transport from land to sea. Glob Change Biol 18(1):349–355. doi:10.1111/j.1365-2486.2011.02544.x

    Article  Google Scholar 

  • Zimmerman JTF (1988) Estuarine residence times. In: Kjerfve B (ed) Hydrodynamics of Estuaries, vol 1. CRC Press, Boca Raton, pp 75–84

    Google Scholar 

Download references

Acknowledgments

Many thanks go to the Swedish Meteorological and Hydrological Institute (SMHI) for providing the hydrological and geomorphological base data used in this study, as well as to the Department of Aquatic Sciences and Assessment at the Swedish University of Agricultural Sciences (SLU) for providing data from thousands of lake water samples. We thank Dolly Kothawala and Blaize Denfeld, as well as three anonymous reviewers for constructive comments. Financial support was received from the Swedish Research Council (VR), the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS), and the Nordic Centre of Excellence “CRAICC—Cryosphere-atmosphere interactions in a changing arctic climate” supported by NordForsk. Martyn N. Futter was funded by the MISTRA Future Forests programme. This work developed within the research framework of the project “The Color of Water”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, R.A., Futter, M.N., Sobek, S. et al. Water renewal along the aquatic continuum offsets cumulative retention by lakes: implications for the character of organic carbon in boreal lakes. Aquat Sci 75, 535–545 (2013). https://doi.org/10.1007/s00027-013-0298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-013-0298-3

Keywords

Navigation