Skip to main content
Log in

Connection Coefficients Between Generalized Rising and Falling Factorial Bases

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Let \({\mathcal{S} = (s_1, s_2, \ldots)}\) be any sequence of nonnegative integers and let \({{S_{k} = \sum_{i=1}^k} {s_i}}\).We then define the falling (rising) factorials relative to \({\mathcal{S}}\) by setting \({(x)\downarrow_{k, \mathcal{S}} = (x- S_{1})(x-S_2) \cdots (x-S_k)}\) and \({(x)\uparrow_{k, \mathcal{S}}= (x+S_1)(x+S_{2}) \cdots (x+S_{k})}\) if \({k \geq 1}\) with \({(x)\downarrow_{0,\mathcal{S}}= (x)\uparrow_{0, \mathcal{S}}= 1}\). It follows that \({\{(x)\downarrow_{k,\mathcal{S}}\}_{k > 0}}\) and \({\{(x)\uparrow_{k,\mathcal{S}}\}_{k > 0}}\) are bases for the polynomial ring \({\mathbb{Q}[x]}\). We use a rook theory model due to Miceli and Remmel to give combinatorial interpretations for the connection coefficients between any two of the bases \({\{(x)\downarrow_{k,\mathcal{S}}\}_{k \geq 0}, \{(x)\uparrow_{k,\mathcal{S}}\}_{k \geq 0}, \{(x)\downarrow_{k,\mathcal{T}}\}_{k \geq 0}}\), and \({\{(x)\uparrow_{k, \mathcal{T}}\}_{k \geq 0}}\) for any two sequences of nonnegative integers \({\mathcal{S} =(s_1, s_2, \ldots)}\) and \({\mathcal{T} = (t_1, t_2, \ldots)}\). We also give two different q-analogues of such coefficients. Moreover, we use this rook model to give an alternative combinatorial interpretation of such coefficients in terms of certain pairs of colored permutations and set partitions with restricted insertion patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Briggs, K.S., Remmel, J.B.: A p, q-analogue of a formula of Frobenius. Electron. J. Combin. 10(1), #R9 (2003)

  2. Briggs, K.S., Remmel, J.B.: m-Rook numbers and a generalization of a formula of Frobenius \({\mathcal{C}_{m} \wr \mathcal{S}_{n}}\) to . J. Combin. Theory Ser. A 113(6), 1138–1171 (2006)

  3. de Médicis A., Leroux P.: A unified combinatorial approach for q- (and p, q−) Stirling numbers. J. Statist. Plann. Inference 34(1), 89–105 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. de Médicis A., Leroux P.: Generalized Stirling numbers, convolution formulae and p, q-analogues. Canad. J. Math. 47(3), 474–499 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Garsia A.M., Remmel J.B.: Q-counting rook configurations and a formula of Frobenius. J. Combin. Theory Ser. A 41(2), 246–275 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Goldman, J., Haglund, J.: Generalized rook polynomials. J. Combin. Theory Ser. A 91(1-2), 509–530 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gould H.W.: The q-Stirling numbers of first and second kinds. Duke Math. J. 28, 281–289 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lindsay J., Mansour T., Shattuck M.: A new combinatorial interpretation of a q-analogue of the Lah numbers. J. Comb. 2(2), 245–264 (2011)

    MATH  MathSciNet  Google Scholar 

  9. Miceli, B.K.: Two q-analogues of poly-Stirling numbers. J. Integer Seq. 14(9), Art.11.9.6 (2011)

  10. Miceli, B.K., Remmel, B.K.: Augmented rook boards and general product formulas. Electron. J. Combin. 15, #R85 (2008)

  11. Milne S.C.: Restricted growth functions, rank row matchings of partition lattices, and q-Stirling numbers. Adv. Math. 43, 173–196 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Remmel, J.B., Wachs, M.: Rook theory, generalized Stirling numbers and (p, q)- analogues. Electron. J. Combin. 11, #R84 (2004)

  13. Wachs M.,White D.: p, q-Stirling numbers and set partition statistics. J. Combin. Theory Ser. A 56(1), 27–46 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wachs, M.: \({\sigma}\) -Restricted growth functions and p, q-Stirling numbers. J. Combin. Theory Ser. A 68(2), 470–480 (1994)

  15. White D.: Interpolating set partition statistics. J. Combin. Theory Ser. A 68(2), 262–295 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Liese.

Additional information

Supported in part by NSF grant DMS 0400507.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liese, J., Miceli, B.K. & Remmel, J. Connection Coefficients Between Generalized Rising and Falling Factorial Bases. Ann. Comb. 19, 337–361 (2015). https://doi.org/10.1007/s00026-015-0268-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-015-0268-7

Keywords

Mathematics Subject Classification

Navigation