Skip to main content
Log in

Row-Strict Quasisymmetric Schur Functions

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Haglund, Luoto, Mason, and van Willigenburg introduced a basis for quasisymmetric functions, called the quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as Schur functions are generated through reverse column-strict tableaux. We introduce a new basis for quasisymmetric functions, called the row-strict quasisymmetric Schur function basis, generated combinatorially through fillings of composition diagrams in much the same way as quasisymmetic Schur functions are generated through fillings of composition diagrams. We describe the relationship between this new basis and other known bases for quasisymmetric functions, as well as its relationship to Schur polynomials. We obtain a refinement of the omega transform operator as a result of these relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguiar M., Bergeron N., Sottile F.: Combinatorial Hopf algebras and generalized Dehn-Sommerville relations. Compos. Math. 142(1), 1–30 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bergeron, N. et al.: Noncommutative Pieri operators on posets. J. Combin. Theory Ser. A 91(1-2), 84–110 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Billera L.J., Hsiao S.K., van Willigenburg S.: Peak quasisymmetric functions and Eulerian enumeration. Adv. Math. 176(2), 248–276 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Billera, L.J., Thomas, H., van Willigenburg, S.: Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions. Adv. Math. 204(1), 204–240 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ehrenborg R.: On posets and Hopf algebras. Adv. Math. 119(1), 1–25 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ferreira, J.: A Littlewood-Richardson rule for row-strict quasi-symmetric Schur functions. Discrete Math. Theor. Comput. Sci. Proc. AO, 329–338 (2011)

  7. Fulton, W.: Young Tableaux. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  8. Gessel, I.M.: Multipartite P-partitions and inner products of skew Schur functions. In: Greene, C. (ed.) Combinatorics and Algebra, pp. 289–317. Amer.Math. Soc., Providence, RI (1984)

  9. Haglund, J. et al.: Quasisymmetric Schur functions. J. Combin. Theory Ser. A 118(2), 463–490 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Haglund, J. et al.: Refinements of the Littlewood-Richardson rule. Trans. Amer. Math. Soc. 363(3), 1665-1686 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hall, P.: The algebra of partitions. In: Macphail, M.S. (ed.) Proceedings of the Fourth Canadian Mathematical Congress, pp. 147–159. University of Toronto Press, Toronto (1959)

  12. Hall, P.: The algebra of partitions. In: Gruenberg,W., Roseblade, J.E. (eds.) The Collected Works of Philip Hall, p. 465. Oxford University Press, New York (1988)

  13. Hivert, F.: Hecke algebras, difference operators, and quasi-symmetric functions. Adv. Math. 155(2), 181–238 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming. Vol. 3. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1973)

  15. Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions V: a degenerate version of U q (gl N ). Internat. J. Algebra Comput. 9(3-4), 405–430 (1999)

    Google Scholar 

  16. Malvenuto, C., Reutenauer, C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967–982 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mason, S.: A decomposition of Schur functions and an analogue of the Robinson- Schensted-Knuth algorithm. Sém. Lothar. Combin. 57, Art. B57e (2008)

  18. Mason, S.K., Remmel, J.: Row-strict quasisymetric Schur functions. Discrete Math. Theor. Comput. Sci. Proc. AO, 657–668 (2011)

  19. Stanley, R.P.: Ordered Structures and Partitions. Amer. Math. Soc., Providence, RI (1972)

  20. Stanley, R.P.: Enumerative Combinatorics. Vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  21. Stanley, R.P.: Theory and applications of plane partitions: Part 1, 2. Stud. Appl. Math. 50, 167–188, 259–279 (1971)

    Google Scholar 

  22. Thibon, J.-Y.: Lectures on noncommutative symmetric functions. In: Interaction of Combinatorics and Representation Theory, pp. 39–94. Math. Soc. Japan, Tokyo (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Mason.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, S., Remmel, J. Row-Strict Quasisymmetric Schur Functions. Ann. Comb. 18, 127–148 (2014). https://doi.org/10.1007/s00026-013-0216-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-013-0216-3

Keywords

Mathematics Subject Classification

Navigation