Skip to main content
Log in

Discrete Morse Theory and the Homotopy Type of Clique Graphs

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

We attach topological concepts to a simple graph by means of the simplicial complex of its complete subgraphs. Using Forman’s discrete Morse theory we show that the strong product of two graphs is homotopic to the topological product of the spaces of their complexes. As a consequence, we enlarge the class of clique divergent graphs known to be homotopy equivalent to all its iterated clique graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcón L. et al.: The complexity of clique graph recognition. Theoret. Comput. Sci. 410, 2072–2083 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandelt H.-J., Prisner E.: Clique graphs and Helly graphs. J. Combin. Theory Ser. B 51(1), 34–45 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björner, A.: Topological methods. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, Vol. 1, 2, pp. 1819–1872. Elsevier, Amsterdam (1995)

  4. Bonomo F. et al.: On clique-perfect and K-perfect graphs. Ars Combin. 80, 97–112 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Boulet R., Fieux E., Jouve B.: Simplicial simple-homotopy of flag complexes in terms of graphs. European J. Combin. 31(1), 161–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Mello C.P., Morgana A., Liverani M.: The clique operator on graphs with few P4’s. Discrete Appl. Math. 154(3), 485–492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dwyer,W.G.: Classifying spaces and homology decompositions. In: Homotopy Theoretic Methods in Group Cohomology, Advanced Courses in Mathematics CRM Barcelona, pp. 1–53. Birkhäuser, Basel (2001)

  8. Eilenberg, S., Steenrod, N.: Foundations of Algebraic Topology. Princeton University Press, Princeton, New Jersey (1952)

  9. Engström A.: Independence complexes of claw-free graphs. European J. Combin. 29(1), 234–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Escalante F.: Über iterierte Clique-Graphen. Abh. Math. Sem. Univ. Hamburg 39, 59–68 (1973)

    Article  MathSciNet  Google Scholar 

  11. Forman, R.: A discrete Morse theory for cell complexes. In: Tau, S.-T. (ed.) Geometry, Topology, & Physics, pp. 112–125. Int. Press, Cambridge, MA (1995)

  12. Harary, F.: Graph Theory. Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London (1969)

  13. Jonsson J.: Simplicial Complexes of Graphs. Springer-Verlag, Berlin (2008)

    Book  MATH  Google Scholar 

  14. Larrión F., Neumann-Lara V., Pizaña M.A.: On the homotopy type of the clique graph. J. Braz. Comput. Soc. 7, 69–73 (2002)

    Article  Google Scholar 

  15. Larrión F., Neumann-Lara V., Pizaña M.A.: Whitney triangulations, local girth and iterated clique graphs. Discrete Math. 258(1-3), 123–135 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Larrión F., Pizaña M.A., Villarroel-Flores R.: Contractibility and the clique graph operator. Discrete Math. 308(16), 3461–3469 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Larrión F., Pizaña M.A., Villarroel-Flores R.: Equivariant collapses and the homotopy type of iterated clique graphs. Discrete Math. 308(15), 3199–3207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Larrión F., Pizaña M.A., Villarroel-Flores R.: Posets, clique graphs and their homotopy type. European J. Combin. 29(1), 334–342 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Matamala M., Zamora J.: A new family of expansive graphs. Discrete Appl. Math. 156(7), 1125–1131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Neumann-Lara, V.: On clique-divergent graphs. In: Problèmes Combinatories et Théorie de Graphes, Colloques internationaux CNRS 260, pp. 313–315. Orsay, Paris (1978)

  21. Prisner E.: Convergence of iterated clique graphs. DiscreteMath. 103(2), 199–207 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Requardt M.: (Quantum) spacetime as a statistical geometry of lumps in random networks. Classical Quantum Gravity 17(10), 2029–2057 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Szwarcfiter, J.L.: A survey on clique graphs. In: Reed, B.A., Sales, C.L. (eds.) Recent Advances in Algorithms and Combinatorics, pp. 109–136. Springer, New York (2003)

  24. Welker V.: Constructions preserving evasiveness and collapsibility. DiscreteMath. 207(1-3), 243–255 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Whitney, H.: A theorem on graphs. Ann. of Math. (2) 32(2), 378–390 (1931)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Villarroel-Flores.

Additional information

Partially supported by SEP-CONACyT, grant 183210.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larrión, F., Pizaña, M.A. & Villarroel-Flores, R. Discrete Morse Theory and the Homotopy Type of Clique Graphs. Ann. Comb. 17, 743–754 (2013). https://doi.org/10.1007/s00026-013-0204-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-013-0204-7

Mathematics Subject Classification

Keywords

Navigation