Skip to main content
Log in

Gauss-Bonnet-Chern Theorem and Differential Characters

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper we first prove that every differential character can be represented by differential form with singularities. Then we lift the Gauss-Bonnet-Chern theorem for vector bundles to differential characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allendoerfer, C.: Characteristic cohomology classes in a Riemann manifold. Ann. Math. (2) 51, 551–570 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allendoerfer, C., Eells, J.: On the cohomology of smooth manifolds. Comment. Math. Helv. 32, 165–179 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bär, C., Becker, C.: Differential characters and geometric chains. In: Differential Characters, Lecture Notes in Mathematics, vol. 2112, pp. 1–187 Springer (2014)

  4. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Grundlehren Text Editions, Corrected reprint of the 1992 original. Springer, Berlin (2004)

  5. Bismut, J.-M.: Eta invariants, differential characters and flat vector bundles. Chin. Ann. Math. Ser. B 26, 15–44 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brüning, J., Ma, X.: An anomaly formula for Ray–Singer metrics on manifolds with boundary. Geom. Funct. Anal. 16(4), 767–837 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bunke, U., Schick, T.: Smooth K-theory. Astérisque (2009), no. 328, pp. 45–135 (2010)

  8. Cheeger, J.: Multiplication of differential characters. In: Symposia Mathematica, Vol. XI, pp. 441–445, (Convegno di Geometria, INDAM, Rome). Academic Press, London (1972)

  9. Cheeger, J., Simons, J.: Differential characters and geometric invariants. In : Geometry and Topology (College Park, Md., 1983/84). Lecture Notes in Mathematics, vol. 1167, pp. 50–80 (1985)

  10. Chern, S.S.: Integral formulas for the characteristic classes of spere bundles. Proc. Natl. Acad. Sci. USA 30, 269–273 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chern, S.S.: A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. Math. (2) 45, 747–752 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chern, S.S.: On the curvatura integra in a Riemannian manifold. Ann. Math. (2) 46, 674–684 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chern, S.S., Simons, J.: Characteristic forms and geometric invariants. Ann. Math. (2) 99, 48–69 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eells, J.: A generalization of the Gauss-Bonnet theorem. Trans. Am. Math. Soc. 92, 142–153 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freed, D.S., Lott, J.: An index theorem in differential \(K\)-theory. Geom. Topol. 14(2), 903–966 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Harris, B.: Differential characters and the Abel-Jacobi map, Algebraic \(K\)-theory: connections with geometry and topology (Lake Louise, AB, 1987), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 279, pp. 69–86. Kluwer Academic Publishers, Dordrecht (1989)

  17. Harvey, R., Lawson, B., Zweck, J.: The de Rham-Federer theory of differential characters and character duality. Am. J. Math. 125(4), 791–847 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harvey, R., Zweck, J.: Divisors and Euler sparks of atomic sections. Indiana Univ. Math. J. 50(1), 243–298 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hopkins, M., Singer, I.: Quadratic functions in geometry, topology, and M-theory. J. Differ. Geom. 70, 329–425 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mathai, V., Quillen, D.: Superconnections, Thom classes, and equivariant differential forms. Topology 25(1), 85–110 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mei, X.M.: The transgression of Pontrjagin characteristic classes. Acta Math. Sin. 23(1), 37–45 (1980)

    MathSciNet  MATH  Google Scholar 

  22. Mei, X.M.: The integral formulas of Chern characteristic forms. J. Math. Res. Expo. (English Ed.) (1), 10–13 (1986)

  23. Takizawa, S.: On the Stiefel characteristic classes of a Riemannian manifold. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 28, 1–10 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, G.L.: The transgression of characteristic forms. I. Acta Math. Sin. 19(1), 52–62 (1976)

    MathSciNet  MATH  Google Scholar 

  25. Wu, G.L.: The transgression of characteristic forms. II. Acta Math. Sin. 19(2), 119–128 (1976)

    MathSciNet  MATH  Google Scholar 

  26. Zhang, W.: Lectures on Chern-Weil Theory and Witten Deformations, vol. 4. Nankai Tracts in Mathematics, World Scientific Publishing Co., Inc., River Edge (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man-Ho Ho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, MH. Gauss-Bonnet-Chern Theorem and Differential Characters. Results Math 72, 573–584 (2017). https://doi.org/10.1007/s00025-017-0652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-017-0652-1

Mathematics Subject Classification

Navigation