Skip to main content
Log in

One-Dimensional Phase Retrieval with Additional Interference Intensity Measurements

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The one-dimensional phase retrieval problem consists in the recovery of a complex-valued signal from its Fourier intensity. Due to the well-known ambiguousness of this problem, the determination of the original signal within the extensive solution set is challenging and can only be done under suitable a priori assumptions or additional information about the unknown signal. Depending on the application, one has sometimes access to further interference intensity measurements between the unknown signal and a reference signal. Beginning with the reconstruction in the discrete-time setting, we show that each signal can be uniquely recovered from its Fourier intensity and two further interference intensity measurements between the unknown signal and a modulation of the signal itself. Afterwards, we consider the continuous-time problem, where we obtain an equivalent result. Moreover, the unique recovery of a continuous-time signal can also be ensured by using interference intensity measurements with a known or an unknown reference which is unrelated to the unknown signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akutowicz, E.J.: On the determination of the phase of a Fourier integral I. Trans. Am. Math. Soc. 83(1), 179–192 (1956)

    MathSciNet  MATH  Google Scholar 

  2. Akutowicz, E.J.: On the determination of the phase of a Fourier integral II. Proc. Am. Math. Soc. 8(2), 234–238 (1957)

    MathSciNet  MATH  Google Scholar 

  3. Alexeev, B., Bandeira, A.S., Fickus, M., Mixon, D.G.: Phase retrieval with polarization. SIAM J. Imaging Sci. 7(1), 35–66 (2014)

    Article  MATH  Google Scholar 

  4. Balan, R., Bodmann, B.G., Casazza, P.G., Edidin, D.: Painless reconstruction from magnitudes of frame coefficients. J. Fourier Anal. Appl. 15(4), 488–501 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balan, R., Casazza, P.G., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345–356 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bandeira, A.S., Chen, Y., Mixon, D.G.: Phase retrieval from power spectra of masked signals. Inf. Interf. 3(2), 83–102 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Beinert, R., Plonka, G.: Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes. J. Fourier Anal. Appl. 21(6), 1169–1198 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beinert, R., Plonka, G.: Enforcing uniqueness in one-dimensional phase retrieval by additional signal information in time domain (2016). arXiv:1604.04493v1

  9. Boas Jr., R.P.: Entire Functions. Academic, New York (1954)

    MATH  Google Scholar 

  10. Bodmann, B.G., Hammen, N.: Stable phase retrieval with low-redundancy frames. Adv. Comput. Math. 41(2), 317–331 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bruck, Y.M., Sodin, L.G.: On the ambiguity of the image reconstruction problem. Opt. Commun. 30(3), 304–308 (1979)

    Article  Google Scholar 

  12. Burge, R.E., Fiddy, M.A., Greenaway, A.H., Ross, G.: The phase problem. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 350, 191–212 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6(1), 199–225 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dainty, J.C., Fienup, J.R.: Phase retrieval and image reconstruction for astronomy. In: Stark, H. (ed.) Image Recovery: Theory and Application, chap. 7, pp. 231–275. Academic, Orlando (1987)

    Google Scholar 

  15. Hauptman, H.A.: The phase problem of x-ray crystallography. Rep. Progr. Phys. 54(11), 1427–1454 (1991)

    Article  Google Scholar 

  16. Hildebrand, F.B.: Introduction to Numerical Analysis, 2nd edn. Dover Publications, New York (1987)

    MATH  Google Scholar 

  17. Hofstetter, E.M.: Construction of time-limited functions with specified autocorrelation functions. IEEE T. Inf. Theory 10(2), 119–126 (1964)

    Article  MATH  Google Scholar 

  18. Kim, W., Hayes, M.H.: Iterative phase retrieval using two Fourier transform intensities. In: Proceedings: ICASSP 90: 1990 international conference on acoustics, speech and signal processing: April 3–6, 1990, vol. 3, pp. 1563–1566. IEEE Signal Processing Society (1990)

  19. Kim, W., Hayes, M.H.: Phase retrieval using two Fourier-transform intensities. J. Opt. Soc. Am. A 7(3), 441–449 (1990)

    Article  Google Scholar 

  20. Kim, W., Hayes, M.H.: The phase retrieval problem in x-ray crystallography. In: Proceedings: ICASSP 91: 1991 international conference on acoustics, speech and signal processing: May 14–17, 1991, vol. 3, pp. 1765–1768. IEEE Signal Processing Society (1991)

  21. Kim, W., Hayes, M.H.: Phase retrieval using a window function. IEEE Trans. Signal Process. 41(3), 1409–1412 (1993)

    Article  MATH  Google Scholar 

  22. Klibanov, M.V., Sacks, P.E., Tikhonravov, A.V.: The phase retrieval problem. Inverse Probl. 11(1), 1–28 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maretzke, S.: A uniqueness result for propagation-based phase contrast imaging from a single measurement (2014). arXiv:1409.4794v1

  24. Markushevich, A.I.: Theory of functions of a complex variable, 2nd edn. Chelsea Publishing Co., New York (1977)

    MATH  Google Scholar 

  25. Millane, R.P.: Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7(3), 394–411 (1990)

    Article  Google Scholar 

  26. Nawab, S., Quatieri, T.F., Lim, J.S.: Algorithms for signal reconstruction from short-time Fourier transform magnitude. In: Proceedings: ICASSP 83: IEEE international conference on acoustics, speech, and signal, vol. 8, pp. 800–803. IEEE (1983)

  27. Nawab, S., Quatieri, T.F., Lim, J.S.: Signal reconstruction from short-time Fourier transform magnitude. IEEE T. Acoust. Speech ASSP-31(4), 986–998 (1983)

  28. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Prentice Hall Signal Processing Series. Prentice Hall, Englewood Cliffs (1989)

  29. Pohl, V., Yang, F., Boche, H.: Phaseless signal recovery in infinite dimensional spaces using structured modulations. J. Fourier Anal. Appl. 20(6), 1212–1233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Prony, R.: Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, á différentes températures. Journal de l’École polytechnique 2, 24–76 (1795)

    Google Scholar 

  31. Raz, O., Dudovich, N., Nadler, B.: Vectorial phase retrieval of 1-d signals. IEEE Trans. Signal Process. 61(7), 1632–1643 (2013)

    Article  MathSciNet  Google Scholar 

  32. Raz, O., Schwartz, O., Austin, D., Wyatt, A.S., Schiavi, A., Smirnova, O., Nadler, B., Walmsley, I.A., Oron, D., Dudovich, N.: Vectorial phase retrieval for linear characterization of attosecond pulses. Phys. Rev. Lett. 107(13), 133,902(5) (2011)

  33. Seifert, B., Stolz, H., Donatelli, M., Langemann, D., Tasche, M.: Multilevel Gauss-Newton methods for phase retrieval problems. J. Phys. A 39(16), 4191–4206 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Seifert, B., Stolz, H., Tasche, M.: Nontrivial ambiguities for blind frequency-resolved optical gating and the problem of uniqueness. J. Opt. Soc. Am. B Opt. Phys 21(5), 1089–1097 (2004)

    Article  Google Scholar 

  35. Walther, A.: The question of phase retrieval in optics. Opt. Acta. 10(1), 41–49 (1963)

    Article  MathSciNet  Google Scholar 

  36. Wood, J.W., Fiddy, M.A., Burge, R.E.: Phase retrieval using two intensity measurements in the complex plane. Opt. Lett. 6(11), 514–516 (1981)

    Article  Google Scholar 

  37. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic, New York (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Beinert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beinert, R. One-Dimensional Phase Retrieval with Additional Interference Intensity Measurements. Results Math 72, 1–24 (2017). https://doi.org/10.1007/s00025-016-0633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-016-0633-9

Mathematics Subject Classification

Keywords

Navigation