Skip to main content
Log in

Series Representations of the Remainders in the Expansions for Certain Functions with Applications

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We present a summary of the series representations of the remainders in the expansions in ascending powers of t of \({2/(e^t+1)}\), sech t and coth t and establish simple bounds for these remainders when \({t > 0}\). Several applications of these expansions are given which enable us to deduce some inequalities and completely monotonic functions associated with the ratio of two gamma functions. In addition, we derive a (presumably new) quadratic recurrence relation for the Bernoulli numbers B n .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. In: Applied Mathematics Series 55, Ninth printing. National Bureau of Standards, Washington, D.C. (1972)

  2. Alzer H.: On some inequalities for the gamma and psi functions. Math. Comput. 66, 373–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beckmann, P.: A History of Pi. St. Martin’s Press, New York (1971)

  4. Berggren, L., Borwein, J., Borwein, P. (eds.) Pi: a source book, 2nd edn. Springer, New York (2000)

  5. Berndt B.C.: Ramanujan’s Notebooks, Part V. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  6. Chen C.-P.: Inequalities and completely monotonic functions associated with the ratios of functions resulting from the gamma function. Appl. Math. Comput. 259, 790–799 (2015)

    MathSciNet  Google Scholar 

  7. Chen C.-P., Qi F.: Completely monotonic function associated with the gamma functions and proof of Wallis’ inequality. Tamkang J. Math. 36, 303–307 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Chen C.-P., Qi F.: The best bounds in Wallis’ inequality. Proc. Am. Math. Soc. 133, 397–401 (2005)

    Article  MATH  Google Scholar 

  9. Chen C.-P., Paris R.B.: Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function. Appl. Math. Comput. 250, 514–529 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Dunham, W.: Journey Through Genius. In: The Great Theorems of Mathematics, Penguin (1990)

  11. Ferreira C., López J.L.: An asymptotic expansion of the double gamma function. J. Approx. Theory 111, 298–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koumandos S.: Remarks on some completely monotonic functions. J. Math. Anal. Appl. 324, 1458–1461 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koumandos S., Pedersen H.L.: Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function. J. Math. Anal. Appl. 355, 33–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koumandos S.: Remarks on a paper by Chao-Ping Chen and Feng Qi. Proc. Am. Math. Soc. 134, 1365–1367 (2006)

    Article  MATH  Google Scholar 

  15. Koumandos S.: On completely monotonic and related functions. Mathematics Without Boundaries, pp. 285–321. Springer, New York (2014)

    Google Scholar 

  16. Lampret V.: Wallis sequence estimated through the Euler–Maclaurin formula: even from the Wallis product \({\pi}\) could be computed fairly accurately. Austr. Math. Soc. Gaz. 31, 328–339 (2004)

    MathSciNet  Google Scholar 

  17. Lampret V.: An asymptotic approximation of Wallis’ sequence. Cent. Eur. J. Math. 10, 775–787 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Matiyasevich, Y.: Identities with Bernoulli numbers. Identity #0202 (1997). http://logic.pdmi.ras.ru/~yumat/Journal/Bernoulli/bernoulli.htm. Accessed 23 Apr 2015

  19. Mortici C.: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 52, 425–433 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mortici C., Cristea V.G., Lu D.: Completely monotonic functions and inequalities associated to some ratio of gamma function. Appl. Math. Comput. 240, 168–174 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Muldoon M.E.: Some monotonicity properties and characterizations of the gamma function. Aequ. Math. 18, 54–63 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Olver F.W.J., Lozier D.W., Boisvert R.F., Clarks, C.W. (eds.) NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010)

  23. Pedersen H.L.: On the remainder in an asymptotic expansion of the double gamma function. Mediterr. J. Math. 2, 171–178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pilehrood K.H., Pilehrood T.H.: Arithmetical properties of some series with logarithmic coefficients. Math. Z. 255, 117–131 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pólya G., Szegö G.: Problems and Theorems in Analysis, vol. I, II. Springer, Berlin (1972)

  26. Sasvári Z.: Inequalities for binomial coefficients. J. Math. Anal. Appl. 236, 223–226 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sofo A.: Some representations of \({\pi}\), Austral. Math. Soc. Gaz. 31, 184–189 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Sofo, A.: \({\pi}\) and some other constants. J. Inequal. Pure Appl. Math. 6(5) (article 138) (electronic) (2005)

  29. Sondow J.: Double integrals for Euler’s constant and \({\ln(4/\pi)}\) and an analog of Hadjicostas’s formula. Am. Math. Monthly 112, 61–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sondow, J.: New Vacca-type rational series for Euler’s constant and its alternating analog \({\ln(4/\pi)}\) In: Chudnovsky, D., Chudnovsky, G. (eds.) Additive Number Theory. Festschrift in Honor of the Sixtieth Birthday of Melvyn B. Nathanson, pp. 331–340. Springer, Berlin (2010)

  31. Sondow J., Hadjicostas P.: The generalized-Euler-constant function \({\gamma(z)}\) and a generalization of Somos’s quadratic recurrence constant. J. Math. Anal. Appl. 332, 292–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Srivastava, H.M., Choi J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht (2001)

  33. Temme N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  34. Wang Z.X., Guo D.R.: Special Functions. World Scientific, Singapore (1989)

    Book  Google Scholar 

  35. Weisstein, E.W.: Bernoulli Numbers. From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/BernoulliNumber.html. Accessed 10 Apr 2015

  36. Whittaker E.T., Watson G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1966)

    Google Scholar 

  37. Wikipedia contributors, Bernoulli numbers, Wikipedia, the free encyclopedia. https://en.wikipedia.org/wiki/Bernoullinumbers. Accessed 10 Apr 2015

  38. Xu Y., Han X.: Complete monotonicity properties for the gamma function and Barnes G-function. Sci. Magna 5, 47–51 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ping Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CP., Paris, R.B. Series Representations of the Remainders in the Expansions for Certain Functions with Applications. Results Math 71, 1443–1457 (2017). https://doi.org/10.1007/s00025-016-0612-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-016-0612-1

Mathematics Subject Classification

Keywords

Navigation