Skip to main content
Log in

An Improbable Observation of the Diurnal Core Resonance

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The resonance associated with the ellipticity of the core-mantle boundary is usually measured with observations of either the Earth’s nutations, or of tidal gravity, strain, or tilt. But, improbably, it can also be seen in a dataset collected and processed with older and simpler technologies: the harmonic constants for the ocean tides. One effect of the resonance is to decrease the ratio of the amplitude of the \(\mathrm{ P_1}\) constituent to the amplitude of the \(\mathrm{ K_1}\) constituent to 0.96 of the ratio in the equilibrium tidal potential. The compilation of ocean-tide harmonic constants prepared by the International Hydrographic Bureau between 1930 and 1980 shows considerable scatter in this ratio; however, if problematic stations and regions are removed, this dataset clearly shows a decreased ratio. While these data apply only a weak constraint to the frequency of the resonance, they also show that the effect could have been observed long before it actually was.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amoruso, A., Botta, V., & Crescentini, L. (2012). Free Core Resonance parameters from strain data: Sensitivity analysis and results from the Gran Sasso (Italy) extensometers. Geophysical Journal International, 189, 923–936. doi:10.1111/j.1365-246X.2012.05440.x.

    Article  Google Scholar 

  • Anonymous. (1926a). Tables for the calculation of tides by means of harmonic constants. International Hydrographic Bureau Special Publication, 12a, 1–136.

  • Anonymous. (1926b). Tide Predicting Machines. International Hydrographic Bureau Special Publication, 13, 110.

  • Anonymous. (1976). Tidal harmonic constants: index of stations. International Hydrographic Bureau Special Publication, 26.

  • Anonymous. (2000). IHO Constituent Data Bank. IHO Circular Letter 19/2000, International Hydrographic Office, Monaco, available at http://www.iho.int/mtg_docs/circular_letters/english/2000/Cl19e

  • Baird, A. W., & Darwin, G. H. (1885). Results of the harmonic analysis of tidal observations. Proceedings of the Royal Society, 39, 135–207. doi:10.1098/rspl.1885.0009.

    Article  Google Scholar 

  • Bermejo, F. (1997). The History of the International Hydrographic Bureau. International Hydrographic Bureau, Monaco, available at http://www.iho.int/iho_pubs/misc/HistoryIHBrevisedJan05

  • Brush, S. G. (1979). Nineteenth-century debates about the inside of the earth solid, liquid, or gas? Annals of Science, 36, 225–254.

    Article  Google Scholar 

  • Cartwright, D. E. (1999). Tides: a Scientific History. New York: Cambridge University Press.

    Google Scholar 

  • Cartwright, D. E., & Edden, A. C. (1973). Corrected tables of tidal harmonics. Geophysical Journal of the Royal Astronomical Society, 33, 253–264.

    Article  Google Scholar 

  • Chao, B., & Hsieh, Y. (2015). The Earth’s free core nutation: Formulation of dynamics and estimation of eigenperiod from the very-long-baseline interferometry data. Earth and Planetary Science Letters, 432, 483–492. doi:10.1016/j.epsl.2015.10.010.

    Article  Google Scholar 

  • Cummins, P. R., & Wahr, J. M. (1993). A study of the Earth’s free core nutation using International Deployment of Accelerometers gravity data. Journal of Geophysical Research, 98, 2091–2103.

    Article  Google Scholar 

  • Darwin, G. H. (1883). Harmonic analysis of tidal observations. British Association for the Advancement of Science: Annual Report, 53, 49–117.

    Google Scholar 

  • Darwin, G. H. (1888). Second series of results of the harmonic analysis of tidal observations. Proceedings of the Royal Society, 45, 556–611. doi:10.1098/rspl.1888.0127.

    Article  Google Scholar 

  • Dehant, V., & Mathews, P. M. (2015). Precession, nutation and wobble of the earth. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Dehant, V., Hinderer, J., Legros, H., & Lefftz, M. (1993). Analytical approach to the computation of the earth, the outer core and the inner core rotational motions. Physics of the Earth and Planetary Interiors, 76, 25–28.

    Article  Google Scholar 

  • Ducarme, B., Sun, H. P., & Xu, J. Q. (2007). Determination of the free core nutation period from tidal gravity observations of the GGP superconducting gravimeter network. Journal of Geodesy, 81, 179–187. doi:10.1007/s00190-006-0098-9.

    Article  Google Scholar 

  • Gwinn, C. R., Herring, T. A., & Shapiro, I. I. (1986). Geodesy by radio interferometry: Studies of the forced nutations of the Earth: 2. Interpretation. Journal of Geophysical Research, 91, 4755–4765. doi:10.1029/JB091iB05p04755.

    Article  Google Scholar 

  • Herring, T. A., Mathews, P. M., & Buffett, B. A. (2002). Modeling of nutation-precession: Very long baseline interferometry results. Journal of Geophysical Research, 107(B4), 2069. doi:10.1029/2001JB000165.

    Article  Google Scholar 

  • Hughes, P. (2006). The revolution in tidal science. Journal of Navigation, 59, 445–459. doi:10.1017/S0373463306003870.

    Article  Google Scholar 

  • Hughes, P., & Wall, A. D. (2007). The ascent of extranational tide tables. Mariner’s Mirror, 93, 51–64. doi:10.1080/00253359.2007.10657027.

    Article  Google Scholar 

  • Jeffreys, H., & Vicente, R. O. (1957a). The theory of nutation and the variation of latitude. Monthly Notices of the Royal Astronomical Society, 117, 142–161. doi:10.1093/mnras/117.2.142.

    Article  Google Scholar 

  • Jeffreys, H., & Vicente, R. O. (1957b). The theory of nutation and the variation of latitude: The Roche core model. Monthly Notices of the Royal Astronomical Society, 117, 162–173. doi:10.1093/mnras/117.2.162.

    Article  Google Scholar 

  • Koot, L., Rivoldini, A., de Viron, O., & Dehant, V. (2008). Estimation of Earth interior parameters from a Bayesian inversion of very long baseline interferometry nutation time series. Journal of Geophysical Research, 113. doi:10.1029/2007JB005409.

  • Kushner DS (1990) The emergence of geophysics in nineteenth-century Britain. Ph.D. thesis, Princeton University, Princeton.

  • Mathews, P. M. (2001). Love numbers and gravimetric factor for diurnal tides. Journal of the Geodetic Society of Japan, 47, 231–236.

    Google Scholar 

  • Mathews, P. M., Buffett, B. A., & Shapiro, I. I. (1995). Love numbers for diurnal tides: Relation to wobble admittances and resonance expansion. Journal of Geophysical Research, 100, 9935–9948.

    Article  Google Scholar 

  • Melchior, P. (1966). Diurnal earth tides and the Earth’s liquid core. Geophysical Journal of the Royal Astronomical Society, 12, 15–21. doi:10.1111/j.1365-246X.1966.tb03097.x.

    Article  Google Scholar 

  • Molodensky, M. S. (1961). The theory of nutations and diurnal earth tides. Communications de l'Observatoire Royale de Belgique, Serie Geophysique, 58, 25–56.

    Google Scholar 

  • Ooe, M., & Tamura, Y. (1985). Fine structures of tidal admittance and the fluid core resonance effect in the ocean tide around Japan. Manuscripta Geodaetica, 10, 37–49.

    Google Scholar 

  • Pétit, G., Luzum, B., & (2010) IERS Conventions,. (2010). IERS Technical Note 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie.

  • Pfaff, J. H. (1926). Investigation of harmonic constants, prediction of tide and current, and their description by means of these constants. International Hydrographic Bureau Special Publication, 12, 1–80.

    Google Scholar 

  • Pfaff, J. H. (1927). A rapid method of the calculation of harmonic tidal constants by a system of cards and machines. International Hydrographic Review, 4, 25–32.

    Google Scholar 

  • Polzer, G., Zürn, W., & Wenzel, H. G. (1996). NDFW analysis of gravity, strain and tilt data from BFO. Bulletin d'Information de Marees Terrestres, 125, 9514–9545.

    Google Scholar 

  • Ponchaut, F., Lyard, F., & LeProvost, C. (2001). An analysis of the tidal signal in the WOCE sea level dataset. Journal of Atmospheric and Oceanic Technology, 18, 77–91.

    Article  Google Scholar 

  • Ray, R. D. (1998). Ocean self-attraction and loading in numerical tidal models. Marine Geodesy, 21, 181–192.

    Article  Google Scholar 

  • Ray, R. D. (2013). Precise comparisons of bottom-pressure and altimetric ocean tides. Journal of Geophysical Research, 118, 4570–4584. doi:10.1002/jgrc.20336.

    Google Scholar 

  • Ray, R.D. (2017). On tidal inference in the diurnal band. Journal of Atmospheric and Oceanic Technology, 35, 437–446. doi:10.1175/JTECH-D-16-0142.1

    Article  Google Scholar 

  • Reidy, M. S. (2008). Tides of history: Ocean science and her majesty’s navy. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Ritchie, G. S. (1980). Some aspects of the history of oceanography as seen through the publications of the International Hydrographic Bureau 1919–1939. In M. Sears & D. Merriman (Eds.), Oceanography: The Past (pp. 148–156). New York: Springer.

    Chapter  Google Scholar 

  • Rosat, S., & Lambert, S. B. (2009). Free core nutation resonance parameters from VLBI and superconducting gravimeter data. Astronomy and Astrophysics, 503, 287–291. doi:10.1051/0004-6361/200811489.

    Article  Google Scholar 

  • Rosat, S., Florsch, N., Hinderer, J., & Llubes, M. (2009). Estimation of the free core nutation parameters from SG data: Sensitivity study and comparative analysis using linearized least-squares and Bayesian methods. Journal of Geodynamics, 48, 331–339. doi:10.1016/j.jog.2009.09.027.

    Article  Google Scholar 

  • Rossiter, J. R. (1972). The history of tidal predictions in the United Kingdom before the twentieth century. Proceedings of the Royal Society of Edinburgh. Section B, 73, 13–23. doi:10.1017/S0080455X00002071.

    Article  Google Scholar 

  • Sasao, T., Okubo, S., Saito, M. (1980). A simple theory on the dynamical effects of a stratified fluid core upon nutational motion of the Earth. In: E.P. Fedorov, M.L. Smith, P.L. Bender (Eds.) Proc. of IAU Symp. (Number 78, pp 165–183). Norwalk, Mass: D. Reidel.

  • Sato, T., Tamura, Y., Higashi, T., Takemoto, S., Nakagawa, I., Morimoto, N., et al. (1994). Resonance parameters of the free core nutation measured from three superconducting gravimeters in Japan. Journal of Geomagnetism and Geoelectricity, 46, 571–586.

    Article  Google Scholar 

  • Skiba, A. W., Zeng, L., Arbic, B. K., Müller, M., & Godwin, W. J. (2013). On the resonance and shelf/open-ocean coupling of the global diurnal tides. Journal of Physical Oceanography, 43, 1301–1324. doi:10.1175/JPO-D-12-054.1.

    Article  Google Scholar 

  • Wahr, J. M. (1981a). A normal mode expansion for the forced response of a rotating Earth. Geophysical Journal of the Royal Astronomical Society, 64, 651–675.

    Article  Google Scholar 

  • Wahr, J. M. (1981b). Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophysical Journal of the Royal Astronomical Society, 64, 677–703.

    Article  Google Scholar 

  • Wahr, J. M., & Sasao, T. (1981). A diurnal resonance in the ocean tide and in the Earth’s load response due to the resonant free “core nutation”. Geophysical Journal of the Royal Astronomical Society, 64, 747–765. doi:10.1111/j.1365-246X.1981.tb02693.x.

    Article  Google Scholar 

  • Woodworth, P. L. (2002). Three Georges and one Richard Holden: The Liverpool tide table makers. Transactions of the Historic Society of Lancashire and Cheshire, 151, 19–51.

    Google Scholar 

  • Woodworth, P.L. (2016). An Inventory of Tide-Predicting Machines. Research and Consultancy Report 56, National Oceanography Centre, Liverpool, available at http://eprints.soton.ac.uk/394662/.

Download references

Acknowledgements

I thank Bernie Zetler for making NOAA’s copy of the IHO Data Bank tape available to me in 1981, and Walter Zürn and Richard Ray for comments on an early draft of this paper. Spherical-harmonic expansions of modern tide models are from Richard Ray at http://bowie.gsfc.nasa.gov/ggfc/tides/harmonics.html, and his recent paper on tidal inference stimulated me to write this one.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan Carr Agnew.

Additional information

To the memory of John Wahr.

Appendix: Corrections to the IHO Data Bank

Appendix: Corrections to the IHO Data Bank

The following modifications were made to the values in the IHO Tidal Data Bank prior to the processing described here. The tidal constants were originally published as separate sheets bound into fascicles: sheets 1–1967 are each for individual stations, though only sheets 1–1180 were published. Groups of stations, usually with fewer constituents, were published on sheets 2000–2347 and 3000–3055.

Sheet 167 (Bass Harbour, Malaysia). The data bank value for \(\mathrm{ P_1}\) is 0.5 cm; reference to the original published sheet shows that this should be 5.5 cm. (This location was not actually part of the winnowed data because of the ratio of \(\mathrm{ P_1}\) to the nonlinear tide \(\text {SO}_1\).)

Sheet 169 (Sydney, Australia). The data bank value for \(\mathrm{ P_1}\) is 0.5 cm; reference to the original published sheet shows that this should be 4.7 cm.

Sheet 670 (Stockton, California). The data bank value for \(\mathrm{ P_1}\) is 2.0 cm; the original published sheet shows a value of 1.999 cm, but this sheet also gives the amplitude in feet (the original units), and this amplitude corresponds to 19.99 cm, so in this case there is a typographical error on the sheet.

Sheet 1445 (Yeosu, Korea). The data bank gives two values for \(\text {K}_2\) and none for \(\mathrm{ K_1}\); looking at the phase of other diurnal tides it is clear that the first \(\text {K}_2\) value should be assigned to \(\mathrm{ K_1}\).

Sheet 1780 (Nagapatnam, India). The data bank value for \(\mathrm{ K_1}\) is 0.5 cm and for \(\mathrm{ P_1}\) is 22.3 cm. I have instead used the values given in Darwin (1888): 6.8 cm for \(\mathrm{ K_1}\) and 2.2 cm for \(\mathrm{ P_1}\).

Sheet 2313 (Santander, Spain). The data bank and published sheet both give \(\mathrm{ P_1}\) an amplitude of 9.0 cm, larger than \(\mathrm{ K_1}\) (6.4 cm). The values for \(\mathrm{ K_1}\) match a number of global models (EOT11A, FES2004, TPXO7.2ATLAS, GOT4P7), which is to be expected since this is a harbor open to the ocean. But these models all give values around 2 to 3 cm for \(\mathrm{ P_1}\). I have therefore rejected this station.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agnew, D.C. An Improbable Observation of the Diurnal Core Resonance. Pure Appl. Geophys. 175, 1599–1609 (2018). https://doi.org/10.1007/s00024-017-1522-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1522-1

Keywords

Navigation