Skip to main content
Log in

Long-Term Probabilistic Forecast for M ≥ 5.0 Earthquakes in Iran

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In this study, a long-term forecasting model is proposed to evaluate the probabilities of forthcoming M ≥ 5.0 earthquakes on a 0.2° grid for an area including the Iranian plateau. The model is built basically from smoothing the locations of preceding events, assuming a spatially heterogeneous and temporally homogeneous Poisson point process for seismicity. In order to calculate the expectations, the space distribution, from adaptively smoothed seismicity, has been scaled in time and magnitude by average number of events over a 5-year forecasting horizon and a tapered magnitude distribution, respectively. The model has been adjusted and applied considering two earthquake datasets: a regional unified catalog (MB14) and a global catalog (ISC). Only the events with M ≥ 4.5 have been retained from the datasets, based on preliminary completeness data analysis. A set of experiments has been carried out, testing different options in the model application, and the average probability gains for target earthquakes have been estimated. By optimizing the model parameters, which leads to increase of the predictive power of the model, it is shown that a declustered catalog has an advantage over a non-declustered one, and a low-magnitude threshold of a learning catalog can be preferred to a larger one. In order to examine the significance of the model results at 95% confidence level, a set of retrospective tests, namely, the L test, the N test, the R test, and the error diagram test, has been performed considering 13 target time windows. The error diagram test shows that the forecast results, obtained for both the two input catalogs, mostly fall outside the 5% critical region that is related to results from a random guess. The L test and the N test could not reject the model for most of the time intervals (i.e. ~85 and ~62% of times for the ISC and MB14 forecasts, respectively). Furthermore, after backwards extending the time span of the learning catalogs and repeating the L test and N test for the new dataset as well as the R test, it is observed that a low-quality longer catalog does not essentially improve the predictive skill of the model than a high-quality shorter one. The performed retrospective tests suggest that the model yields some statistically acceptable efficiency for the studied area, at least with respect to the spatially uniform reference model. Thus, the considered model may provide useful information as a reference for more refined time-independent models and also in combination with long-term indications from seismic hazard maps; this is particularly relevant in areas characterized by a high level of predicted ground shaking and high forecast rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bird, P., & Kagan, Y. Y. (2004). Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bulletin of the Seismological Society of America, 94(6), 2380–2399.

    Article  Google Scholar 

  • Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167(2), 761–778.

    Article  Google Scholar 

  • Field, E. H., Arrowsmith, R. J., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., et al. (2014). Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3): The time-independent model. Bulletin of the Seismological Society of America, 104(3), 1122–1180.

    Article  Google Scholar 

  • Helmstetter, A., Kagan, Y. Y., & Jackson, D. D. (2007). High-resolution time-independent grid-based forecast for M ≥ 5 earthquakes in California. Seismological Research Letters, 78(1), 78–86.

    Article  Google Scholar 

  • Helmstetter, A., & Werner, M. J. (2012). Adaptive spatiotemporal smoothing of seismicity for long-term earthquake Forecasts in California. Bulletin of the Seismological Society of America, 102(6), 2518–2529.

    Article  Google Scholar 

  • Jordan, T. H., Marzocchi, W., Michael, A. J., & Gerstenberger, M. C. (2014). Operational earthquake forecasting can enhance earthquake preparedness. Seismological Research Letters, 85(5), 955–959.

    Article  Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (1994). Long-term probabilistic forecasting of earthquakes. Journal of Geophysical Research, 99, 13685–13700.

    Article  Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (2000). Probabilistic forecasting of earthquakes. Geophysical Journal International, 143(2), 438–453.

    Article  Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (2006). Comment on ‘Testing earthquake prediction methods: “The West Pacific short-term forecast of earthquakes with magnitude Mw HRV ≥ 5.8” by VG Kossobokov. Tectonophysics, 413(1), 33–38.

    Article  Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (2010). Short-and long-term earthquake forecasts for California and Nevada. Pure and Applied Geophysics, 167(6–7), 685–692.

    Article  Google Scholar 

  • Kagan, Y. Y., & Knopoff, L. (1977). Earthquake risk prediction as a stochastic process. Physics of the Earth and Planetary Interiors, 14(2), 97–108.

    Article  Google Scholar 

  • Karimiparidari, S., Zaré, M., Memarian, H., & Kijko, A. (2013). Iranian earthquakes, a uniform catalog with moment magnitudes. Journal of Seismology, 17(3), 897–911.

    Article  Google Scholar 

  • Kossobokov, V. G. (2006). Testing earthquake prediction methods: « The West Pacific short-term forecast of earthquakes with magnitude MwHRV ≥ 5.8». Tectonophysics, 413(1), 25–31.

    Article  Google Scholar 

  • Kossobokov, V. G., & Carlson, J. M. (1995). Active zone size versus activity: A study of different seismicity patterns in the context of the prediction algorithm M8. Journal of Geophysical Research, 100(B4), 6431–6441.

    Article  Google Scholar 

  • Kossobokov, V. G., Peresan, A., & Panza, G. F. (2015). On operational earthquake forecast and prediction problems. Seismological Research Letters, 86(2A), 287–290.

    Google Scholar 

  • Maybodian, M., Zare, M., Hamzehloo, H., Peresan, A., Ansari, A., & Panza, G. F. (2014). Analysis of precursory seismicity patterns in Zagros (Iran) by CN algorithm. Turkish Journal of Earth Sciences, 23(1), 91–99.

    Article  Google Scholar 

  • Molchan, G. M. (1991). Structure of optimal strategies in earthquake prediction. Tectonophysics, 193(4), 267–276.

    Article  Google Scholar 

  • Molchan, G. M. (2003). Earthquake prediction strategies: a theoretical analysis. In: Nonlinear dynamics of the lithosphere and earthquake prediction (pp. 209–237), Springer, New York

  • Molchan, G. M. (2012). On the testing of seismicity models. Acta Geophysica, 60(3), 624–637.

    Article  Google Scholar 

  • Molchan, G. M., & Kagan, Y. Y. (1992). Earthquake prediction and its optimization. Journal of Geophysical Research, 97(B4), 4823–4838.

    Article  Google Scholar 

  • Mousavi-Bafrouei, S. H., Mirzaei, N., & Shabani, E. (2014). A declustered earthquake catalog for the Iranian Plateau. Annals of Geophysics, 57(6), S0653–1–25.

  • Panza, G. F., La Mura, C., Peresan, A., Romanelli, F., & Vaccari, F. (2012). Chapter three-seismic hazard scenarios as preventive tools for a disaster resilient society. Advances in Geophysics, 53, 93–165.

    Article  Google Scholar 

  • Peresan, A., Kossobokov, V. G., & Panza, G. F. (2012). Operational earthquake forecast/prediction. Rendiconti Lincei, 23(2), 131–138.

    Article  Google Scholar 

  • Peresan, A., Panza, G. F., & Costa, G. (2000). CN algorithm and long-lasting changes in reported magnitudes: The case of Italy. Geophysical Journal International, 141(2), 425–437.

    Article  Google Scholar 

  • Peresan, A., Rotwain, I., Zaliapin, I., & Panza, G. F. (2002). Stability of intermediate-term earthquake predictions with respect to random errors in magnitude: The case of central Italy. Physics of the Earth and Planetary Interiors, 130(1), 117–127.

    Article  Google Scholar 

  • Peresan, A., Zuccolo, E., Vaccari, F., Gorshkov, A., & Panza, G. F. (2011). Neo-deterministic seismic hazard and pattern recognition techniques: Time-dependent scenarios for North-Eastern Italy. Pure and Applied Geophysics, 168(3–4), 583–607.

    Article  Google Scholar 

  • Radan, M. Y., Hamzehloo, H., Peresan, A., Zare, M., & Zafarani, H. (2013). Assessing performances of pattern informatics method: A retrospective analysis for Iran and Italy. Natural Hazards, 68(2), 855–881.

    Article  Google Scholar 

  • Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research, 90(B7), 5479–5495.

    Article  Google Scholar 

  • Rhoades, D. A., Schorlemmer, D., Gerstenberger, M. C., Christophersen, A., Zechar, J. D., & Imoto, M. (2011). Efficient testing of earthquake forecasting models. Acta Geophysica, 59(4), 728–747.

    Article  Google Scholar 

  • Richards-Dinger, K. B., & Shearer, P. M. (2000). Earthquake locations in southern California obtained using source-specific station terms. Journal of Geophysical Research, 105(B5), 10939–10960.

    Article  Google Scholar 

  • Schorlemmer, D., & Gerstenberger, M. C. (2007). RELM testing center. Seismological Research Letters, 78(1), 30–36.

    Article  Google Scholar 

  • Schorlemmer, D., Gerstenberger, M. C., Wiemer, S., Jackson, D. D., & Rhoades, D. A. (2007). Earthquake likelihood model testing. Seismological Research Letters, 78(1), 17–29.

    Article  Google Scholar 

  • Schorlemmer, D., Zechar, J. D., Werner, M. J., Field, E. H., Jackson, D. D., Jordan, T. H., et al. (2010). First results of the regional earthquake likelihood models experiment. Pure and Applied Geophysics, 167(8–9), 859–876.

    Article  Google Scholar 

  • Shahvar, M. P., Zare, M., & Castellaro, S. (2013). A unified seismic catalog for the Iranian plateau (1900–2011). Seismological Research Letters, 84(2), 233–249.

    Article  Google Scholar 

  • Shebalin, P. N., Narteau, C., Zechar, J. D., & Holschneider, M. (2014). Combining earthquake forecasts using differential probability gains. Earth, Planets and Space, 66(1), 1–14.

    Article  Google Scholar 

  • Talebi, M., Zare, M., Madahi-Zadeh, R., & Bali-Lashak, A. (2015). Spatial-temporal analysis of seismicity before the 2012 Varzeghan, Iran, Mw 6.5 earthquake. Turkish Journal of Earth Sciences, 24(3), 289–301.

    Article  Google Scholar 

  • Werner, M. J., Helmstetter, A., Jackson, D. D., & Kagan, Y. Y. (2011). High-resolution long-term and short-term earthquake forecasts for California. Bulletin of the Seismological Society of America, 101(4), 1630–1648.

    Article  Google Scholar 

  • Werner, M. J., Helmstetter, A., Jackson, D. D., Kagan, Y. Y., & Wiemer, S. (2010a). Adaptively smoothed seismicity earthquake forecasts for Italy. arXiv:1003.4374.

  • Werner, M. J., Zechar, J. D., Marzocchi, W., Wiemer, S., & Group, C.-I. W. (2010b). Retrospective evaluation of the five-year and ten-year CSEP-Italy earthquake forecasts. Annals of Geophysics, 53(3), 11–30

  • Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismological Research Letters, 72(3), 373–382.

    Article  Google Scholar 

  • Wiemer, S., & Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western United States, and Japan. Bulletin of the Seismological Society of America, 90(4), 859–869.

    Article  Google Scholar 

  • Zare, M., Amini, H., Yazdi, P., Sesetyan, K., Demircioglu, M. B., Kalafat, D., et al. (2014). Recent developments of the Middle East catalog. Journal of Seismology, 18(4), 749–772.

    Article  Google Scholar 

  • Zechar, J. D. (2010). Evaluating earthquake predictions and earthquake forecasts: A guide for students and new researchers. Community Online Resource for Statistical Seismicity Analysis, 1–26.

  • Zechar, J. D., Gerstenberger, M. C., & Rhoades, D. A. (2010a). Likelihood-based tests for evaluating space-rate-magnitude earthquake forecasts. Bulletin of the Seismological Society of America, 100(3), 1184–1195.

    Article  Google Scholar 

  • Zechar, J. D., & Jordan, T. H. (2008). Testing alarm-based earthquake predictions. Geophysical Journal International, 172(2), 715–724.

    Article  Google Scholar 

  • Zechar, J. D., & Jordan, T. H. (2010). Simple smoothed seismicity earthquake forecasts for Italy. Annals of Geophysics, 53(3), 99–105.

    Google Scholar 

  • Zechar, J. D., Schorlemmer, D., Liukis, M., Yu, J., Euchner, F., Maechling, P. J., et al. (2010b). The collaboratory for the study of earthquake predictability perspective on computational earthquake science. Concurrency and Computation: Practice and Experience, 22(12), 1836–1847.

    Article  Google Scholar 

  • Zechar, J. D., Schorlemmer, D., Werner, M. J., Gerstenberger, M. C., Rhoades, D. A., & Jordan, T. H. (2013). Regional earthquake likelihood models I: First-order results. Bulletin of the Seismological Society of America, 103(2A), 787–798.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank numerous colleagues, namely, Elham Malek-Mohammadi, Ehsan Noroozinejad, Meysam Mahmud-Abadi, and Mehdi Ahmadi-Borji for sharing their points of view on the manuscript. The authors would also like to acknowledge International Institute of Earthquake Engineering and Seismology (IIEES) for its help in providing research documents and methodological aspects of the job.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Zare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi, M., Zare, M., Peresan, A. et al. Long-Term Probabilistic Forecast for M ≥ 5.0 Earthquakes in Iran. Pure Appl. Geophys. 174, 1561–1580 (2017). https://doi.org/10.1007/s00024-017-1516-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1516-z

Keywords

Navigation