Skip to main content
Log in

Seismicity on Basement Faults Induced by Simultaneous Fluid Injection–Extraction

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Large-scale carbon dioxide (CO2) injection into geological formations increases pore pressure, potentially inducing seismicity on critically stressed faults by reducing the effective normal stress. In addition, poroelastic expansion of the reservoir alters stresses, both within and around the formation, which may trigger earthquakes without direct pore-pressure diffusion. One possible solution to mitigate injection-induced earthquakes is to simultaneously extract pre-existing pore fluids from the target reservoir. To examine the feasibility of the injection–extraction strategy, we compute the spatiotemporal change in Coulomb stress on basement normal faults, including: (1) the change in poroelastic stresses \(\Delta \tau _s+f\Delta \sigma _n\), where \(\Delta \tau _s\) and \(\Delta \sigma _n\) are changes in shear and normal stress. respectively, and (2) the change in pore-pressure \(f\Delta p\). Using the model of (J. Geophys. Res. Solid Earth 99(B2):2601–2618, 1994), we estimate the seismicity rate on basement fault zones. Fluid extraction reduces direct pore-pressure diffusion into conductive faults, generally reducing the risk of induced seismicity. Limited diffusion into/from sealing faults results in negligible pore pressure changes within them. However, fluid extraction can cause enhanced seismicity rates on deep normal faults near the injector as well as shallow normal faults near the producer by poroelastic stressing. Changes in seismicity rate driven by poroelastic response to fluid injection–extraction depends on fault geometry, well operations, and the background stressing rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • B. Bennion and S. Bachu. Relative permeability characteristics for supercritical CO2 displacing water in a variety of potential sequestration zones. SPE Annual Technical Conference and Exhibition, 2005.

  • P. E. S. Bergmo, A. A. Grimstad, and E. Lindeberg. Simultaneous CO 2 injection and water production to optimize aquifer storage capacity. Int. J. Greenh. Gas Con.,5 (3): 555–564, 2011. doi:10.1016/j.ijggc.2010.09.002.

  • M. A. Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12: 155–164, 1941.

  • J. T. Birkholzer, A. Cihan, and Q. L. Zhou. Impact-driven pressure management via targeted brine extraction: Conceptual studies of CO 2 storage in saline formations. Int. J. Greenh. Gas Con., 7: 168–180, 2012. doi:10.1016/j.ijggc.2012.01.001.

  • S. E. Buckley and M. C. Leverett. Mechanism of fluid displacement in sands. Trans. AIME, 146: 107–116, 1942. doi:10.2118/942107-G.

  • T. A. Buscheck, Y. Sun, M. Chen, Y. Hao, T. J. Wolery, W. L. Bourcier, B. Court, M. A. Celia, S. J. Friedmann, and R. D. Aines. Active CO 2 reservoir management for carbon storage: Analysis of operational strategies to relieve pressure buildup and improve injectivity. Int. J. Greenh. Gas Con., 6: 230–245, 2012. doi:10.1016/j.ijggc.2011.11.007.

  • K. W. Chang and P. Segall. Injection induced seismicity on basement faults including poroelastic stressing. J. Geophys. Res. Solid Earth, 121(4): 2708–2726, 2016. doi:10.1002/2015JB012561.

  • K. W. Chang, M. A. Hesse, and J.-P. Nicot. Reduction of lateral pressure propagation due to dissipation into ambient mudrocks during geological carbon dioxide storage. Water Resour. Res., 49 (5): 2573–2588, 2013. doi:10.1002/wrcr.20197.

  • Q. Chen and A. Nur. Pore fluid pressure effects in anisotropic rocks: Mechanisms of induced seismicity and weak faults. Pure Appl. Geophys., 139(3–4): 463–479, 1992.

  • COMSOL Multiphysics. COMSOL Multiphysics User’s Guide. COMSOL AB, Burlington, Mass., 2014.

  • B. Court, M.A. Celia, J.N. Nordbotten, and T.R. Elliot. Active and integrated management of water resources throughout CO 2 capture and sequestration operations. Energy Procedia, 4: 4221–4229, 2011. doi:10.1016/j.egypro.2011.02.370.

  • J. H. Dieterich. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. Solid Earth, 99(B2): 2601–2618, 1994. doi:10.1029/93JB02581.

  • K. Dreij, Q. A. Chaudhry, B. Jernstrom, R. Morgenstern, and M. Hanke. A method for efficient calculation of diffusion and reactions of lipophilic compounds in complex cell geometry. PLoS ONE, 6 (8): 1–18, 2011.

  • W. L. Ellsworth. Injection-induced earthquakes. Science, 341(6142), 2013. doi:10.1126/science.1225942.

  • C. Frohlich, W. L. Ellsworth, W. A. Brown, M. Brunt, J. H. Luetgert, T. MacDonald, and S. Walter. The 17 May 2012 M4.8 earthquake near Timpson, east Texas: An event possibly triggered by fluid injection. J. Geophys. Res. Solid Earth, 119: 581–593, 2014. doi:10.1002/2013JB010755.

  • J. H. Healy, W. W. Rubey, D. T. Griggs, and C. B. Raleigh. The Denver earthquakes. Science, 161 (3848): 1301–1310, 1968. doi:10.1126/science.161.3848.1301.

  • J. E. Heath, S. A. McKenna, T. A. Dewers, J. D. Roach, and P. H. Kobos. Mutiwell CO 2 injectivity: Impact of boundary conditions and brine extraction on geological CO 2 storage efficiency and pressure buildup. Environ. Sci. Technol., 48: 1067–1074, 2014. doi:10.1021/es4017014.

  • M. J. Hornbach, H. R. DeShon, W. L. Ellsworth, B. W. Stump, C. Hayward, C. Frohlich, H. R. Oldham, J. E. Olson, M. B. Magnani, C. Brokaw, and J. H. Luetgert. Causal factors for seismicity near Azle, Texas. Nature communications, 6 (6728): 1067–1074, 2015. doi:10.1038/ncomms7728.

  • S. Horton. Disposal of hydrofracking waste water fluid by injection into subsurface aquifers triggers earthquake swarm in Central Arkansas with potential for damaging earthquake. Seismol. Res. Lett., 83(2): 250–260, 2012. doi:10.1785/gssrl.83.2.250.

  • S. A. Hosseini and J. P. Nicot. Scoping analysis of brine extraction/re-injection for enhanced CO 2 storage. Greenh. Gases Sci. Technol., 2: 172–184, 2012.

  • T. J. R. Hughes. The Finite Element Method. Dover Publications, 2000.

  • K. M. Kerenan, H. M. Savage, G. A. Abers, and E. S. Cochran. Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 M w 5.7 earthquake sequence. Geology, 41: 699–702, 2013. doi: 10.1130/G34045.1.

  • K. M. Kerenan, M. Weingarten, G. A. Abers, B. Bekins, and S. Ge. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345(6159): 448, 2014. doi:10.1126/science.1255802.

  • W. Y. Kim. Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio. J. Geophys. Res. Solid Earth, 118(7): 3506–3518, 2013. doi:10.1002/jgrb.50247.

  • S. Kim and S. Hosseini. Above-zone pressure monitoring and geomechanical analyses for a field-scale CO 2 injection project, Cranfield, MS. Greenh. Gas Sci. Technol., 4: 81–98, 2013.

  • H. Liu, Z. Hou, P. Were, X. Sun, and Y. Gou. Numerical studies on CO 2 injection-brine extraction process in a low-medium temperature reservoir system. Environ. Earth Sci., 73 (11): 6839–6854, 2015. doi:10.1007/s12665-015-4086-3.

  • B. Metz, O. Davidson, H. De Coninck, M. Loos, and L. Meyer. Special Report on Carbon Capture and Storage. Cambridge University Press, Cambridge, U.K., and New York, NY, U.S.A., 2005.

  • J.-P. Nicot, S. D. Hovorka, and J.-W. Choi. Investigation of water displacement following large CO 2 sequestration operations. Energy Procedia, 1(1): 4411–4418, 2009. DOI: 10.1016/j.egypro.2009.02.256.

  • C. B. Raleigh, J. H. Healy, and J. D. Bredehoeft. An experiment in earthquake control at Rangely, Colorado. Science, 191(4233): 1230–1237, 1976. doi:10.1126/science.191.4233.1230.

  • J. R. Rice and M. P. Cleary. Some basic stress diffusion solutions for fluid-saturated porous media with compressible constituents. Rev. Geophys., 14(2): 227–241, 1976. doi:10.1029/RG014i002p00227.

  • J. L. Rubinstein and A. B. Mahani. Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismol. Res. Lett., 86(4): 1060–1067, 2015. doi:10.1785/0220150067.

  • J. Rutqvist, J. Birkholzer, F. Cappa, and C.-F. Tsang. Estimating maximum sustainable injection pressure during geological sequestration of CO 2 using coupled fluid flow and geomechanical fault-slip analysis. Energ. Convers. Manage., 48(6): 1798–1807, 2007.

  • P. Segall. Earthquakes triggered by fluid extraction. Geology, 17(10): 942–946, 1989.

  • P. Segall. Earthquake and Volcano Deformation. Princeton University Press, Princeton, NJ, 2010.

  • P. Segall and S. D. Fitzgerald. A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics, 289 (1): 117–128, 1998. doi:10.1016/S0040-1951(97)00311-9.

  • P. Segall, J.-R. Grasso, and A. Mossop. Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. J. Geophys. Res., 99(B8): 15423–15438, 1994. doi:10.1029/94JB00989.

  • P. Segall and S. Lu. Injection induced seismicity: poroelastic and earthquake nucleation effects. J. Geophys. Res. Solid Earth, 120 (7): 5082–5103, 2015. doi:10.1002/2015JB012060.

  • E. Stanislavsky and G. Garven. The minimum depth of fault failure in compressional environments. Geophys. Res. Lett., 29(24): 2155, 2002. doi:10.1029/2002GL016363.

  • A. L. Stork, J. P. Verdon, and J.-M. Kendall. The microseismic response at the In Salah Carbon Capture and Storage (CCS) site. Int. J. Greenh. Gas Con., 32: 159–171, 2015. doi:10.1016/j.ijggc.2014.11.014.

  • J. E. Streit and R. R. Hillis. Estimating fault stability and sustainable fluid pressures for underground storage of CO 2 in porous rock. Energy, 29(9): 1445–1456, 2004.

  • P. Talwani and S. Acree. Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure Appl. Geophys., 122(6): 947–965, 1984.

  • S. Thibeau and V. Mucha. Have we overestimated saline aquifer CO 2 storage capacities? Oil Gas Sci. Technol. - Rev. IFP Energ. Nouvelles, 66: 81–92, 2011.

  • J. P. Verdon, J.-M. Kendall, A. L. Stork, R. A. Chadwick, D. J. White, and R. C. Bissell. A comparison of geomechanical deformation induced by megatonne scale CO 2 storage at Sleipner, Weyburn and In Salah. Proc. Natl. Acad. Sci., 110: E2762–E2771, 2013. doi:10.1073/pnas.1302156110.

  • H. F. Wang. Theory of Linear Poroelasticity. Princeton University Press, Princeton, NJ, 2000.

  • H. J. Welge, E. F. Johnson, A. L. Hicks, and F. H. Brinkman. An analysis for predicting the performance of cone shaped reservoirs receiving gas or water injection. J. Petrol. Technol., 14(8): 894–898, 1962. doi:10.2118/294-PA.

  • J. P. Willson, R. J. Lunn, and Z. K. Shipton. Simulating spatial and temporal evolution of multiple wing cracks around faults in crystalline basement rocks. J. Geophys. Res. Solid Earth, 112 (B08408), 2007. doi:10.1029/2006JB004815.

  • Y. Zhang, M. Person, J. Rupp, K. Elett, M. A. Celia, C. W. Gable, B. Bowen, J. Evans, L. Bandilla, P. Mozley, T. Dewers, and T. Elliot. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs. Ground Water, 51(4): 525–538, 2013. doi:10.1111/gwat.12071.

  • M. D. Zoback and S. M. Gorelick. Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc. Natl. Acad. Sci., 109(26): 10164–10168, 2012. doi:10.1073/pnas.1202473109.

Download references

Acknowledgments

This work was Supported by the Stanford Center for Induced and Triggered Seismicity (SCITS). The authors are grateful to the reviewers of this paper for their constructive comments as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Won Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, K.W., Segall, P. Seismicity on Basement Faults Induced by Simultaneous Fluid Injection–Extraction. Pure Appl. Geophys. 173, 2621–2636 (2016). https://doi.org/10.1007/s00024-016-1319-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1319-7

Keywords

Navigation