Skip to main content
Log in

A Study of the 2015 M w 8.3 Illapel Earthquake and Tsunami: Numerical and Analytical Approaches

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The September 16, 2015 Illapel, Chile earthquake triggered a large tsunami, causing both economic losses and fatalities. To study the coastal effects of this earthquake, and to understand how such hazards might be accurately modeled in the future, different finite fault models of the Illapel rupture are used to define the initial condition for tsunami simulation. The numerical code Non-hydrostatic Evolution of Ocean WAVEs (NEOWAVE) is employed to model the tsunami evolution through the Pacific Ocean. Because only a short time is available for emergency response, and since the earthquake and tsunami sources are close to the coast, gaining a rapid understanding of the near-field run-up behavior is highly relevant to Chile. Therefore, an analytical solution of the 2 + 1 D shallow water wave equations is considered. With this solution, we show that we can quickly estimate the run-up distribution along the coastline, to first order. After the earthquake and tsunami, field observations were measured in the surrounded coastal region, where the tsunami resulted in significant run-up. First, we compare the analytical and numerical solutions to test the accuracy of the analytical approach and the field observations, implying the analytic approach can accurately model tsunami run-up after an earthquake, without sacrificing the time necessary for a full numerical inversion. Then, we compare both with field run-up measurements. We observe the consistency between the two approaches. To complete the analysis, a tsunami source inversion is performed using run-up field measurements only. These inversion results are compared with seismic models, and are shown to capture the broad-scale details of those models, without the necessity of the detailed data sets they invert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Aránguiz, R., González, G., González, J., Catalán, P. A., Cienfuegos, R., Yagi, Y., Okuwaki R., Urra L., Contreras K., Del Rio I., and Rojas, C., (2016). The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives. Pure and Appl. Geophys., 173(2), 333–348, doi:10.1007/s00024-015-1225-4.

  • Beck, S. L., Barrientos, S., Kausel E., and Reyes M., (1998). Source characteristics of large historic earthquakes along the Chile subduction zone. J. S. Am. Earth Sci. 11(2), 115–129, doi: 10.1016/S0895-9811(98)00005-4.

  • Calisto, I., Miller, M., and Constanzo, I. (2016). Comparison between tsunami signals generated by different source models and the observed data of the illapel 2015 earthquake. Pure and Appl. Geophys., 173(4), 1051–1061, doi: 10.1007/s00024-016-1253-8.

  • Contreras-López, M., Winckler, P., Sepúlveda, I., Andaur-Álvarez, A., Cortés-Molina, F., Guerrero, C. J., Mizobe C.E., Igualt F., Breuer W., Beyá J.F., Vergara H., and Vergara, H. (2016). Field survey of the 2015 Chile tsunami with emphasis on coastal wetland and conservation areas. Pure and Appl. Geophys., 173(2), 349–367, doi: 10.1007/s00024-015-1235-2.

  • Fuentes, M., Ruiz, J., and Cisternas, A., (2013). A theoretical model of tsunami runup in Chile based on a simple bathymetry. Geoph. J. Int., 196(2), 986–995, doi: 10.1093/gji/ggt426.

  • Hayes, G. P., Bergman, E., Johnson, K. L., Benz, H. M., Brown, L., and Meltzer, A. S. (2013). Seismotectonic framework of the 2010 February 27 M w 8.8 Maule, Chile earthquake sequence. Geoph. J. Int., 205(3), doi: 10.1093/gji/ggt23.

  • Hayes, G. P., Herman, M. W., Barnhart, W. D., Furlong, K. P., Riquelme, S., Benz, H. M., Bergman, E., Barrientos, S., Earle, P.S., and Samsonov, S. (2014). Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature, 512(7514), 295–298, doi: 10.1038/nature13677.

  • Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., and Gusman, A. R. (2015). Source model of the 16 September 2015 Illapel, Chile M w 8.4 earthquake based on teleseismic and tsunami data. Geophys. Res. Lett., 43(2), 643–650. doi:10.1002/2015GL067297.

    Article  Google Scholar 

  • Ji, C., Wald, D. J., and Helmberger, D. V. (2002). Source description of the 1999 Hector Mine, California, earthquake, part I: wavelet domain inversion theory and resolution analysis. Bull. Seism. Soc. Am., 92(4), 1192–1207.

    Article  Google Scholar 

  • Lay, T., and Kanamori H., (2011). Insights from the great 2011 Japan earthquake. Phys. Today 64(12), 33, doi: 10.1063/PT.3.1361.

  • Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., Yue, H. and Rushing, T. M. (2012). Depth‐varying rupture properties of subduction zone megathrust faults. J. Geophys. Res.: Solid Earth, 117(B4), doi: 10.1029/2011JB009133.

  • Melgar D., Fan W., Riquelme S., Geng.J,  Liang C., Fuentes M., Vargas G, Allen R.M, Shearer P., and Fielding E.J (2016). Slip segmentation and slow rupture to the trench during the 2016, M w 8.3 Illapel, Chile earthquake. Geophys. Res. Lett, 43(3), 961–966, doi: 10.1002/2015GL067369.

  • Moreno, M.S., Bolte, J., Klotz, J., and Melnick, D. (2009). Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake. Geophys. Res. Lett. 36, doi:10.1029/2009GL039276.

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am., 75(4), 1135–1154.

    Google Scholar 

  • Omira, R., Baptista, M. A., and Lisboa, F. (2016). Tsunami characteristics along the Peru–Chile trench: Analysis of the 2015 M w 8.3 Illapel, the 2014 M w 8.2 Iquique and the 2010 M w 8.8 Maule tsunamis in the near-field. Pure and Appl. Geophys., 173(4), 1063–1077, doi: 10.1007/s00024-016-1277-0.

  • Pacheco, J. F., and Sykes, L. R. (1992). Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bull. Seism. Soc. Am., 82(3), 1306–1349.

  • Piatanesi, A., Tinti, S., and Gavagni, I. (1996). The slip distribution of the 1992 Nicaragua Earthquake from tsunami run‐up data. Geophys. Res. Lett., 23(1), 37–40, doi: 10.1029/95GL03606.

  • Plafker G., (1997). Catastrophic tsunami generated by submarine slides and backarc thrusting during the 1992 earthquake on eastern Flores I., Indonesia. Geol. Soc. Am. Cordill., 29(5), 57.

  • Riquelme, S., Fuentes, M., Hayes, G. P., and Campos, J. (2015). A rapid estimation of near‐field tsunami runup. J. Geophys. Res.: Solid Earth, 120(9), 6487–6500, doi: 10.1002/2015JB012218.

  • Scholz, C. H. (2002). The mechanics of earthquakes and faulting. Cambridge university press.

  • Sugawara, D., Minoura, K., and Imamura, F. (2008). Tsunamis and tsunami sedimentology. Tsunamiites-Features and Implications, 9–49.

  • Tang, L., Titov, V. V., Moore, C., and Wei, Y. (2016). Real-time assessment of the 16 September 2015 Chile tsunami and implications for near-field forecast. Pure and Appl. Geophys., 173(2), 369–387, doi: 10.1007/s00024-015-1226-3.

  • Vajnovszki, V. (2014). An efficient Gray code algorithm for generating all permutations with a given major index. J. Discrete Algorithms, 26, 77–88, doi: 10.1016/j.jda.2014.01.001.

  • Yamazaki, Y., Kowalik, Z., and Cheung, K. F. (2009). Depth‐integrated, non‐hydrostatic model for wave breaking and run‐up. Int. J. Numer. Meth. Fluids, 61(5), 473–497, doi: 10.1002/fld.1952.

  • Yamazaki, Y., Cheung, K. F., and Kowalik, Z. (2011). Depth‐integrated, non‐hydrostatic model with grid nesting for tsunami generation, propagation, and run‐up. Int. J. Numer. Meth. Fluids, 67(12), 2081–2107, doi: 10.1002/fld.2485.

  • Ye, L., Lay, T., Kanamori, H., and Koper, K., (2015). Rapidly estimated seismic source parameters for the 16 September 2015 Illapel, Chile M w 8.3 earthquake. Pure and Appl. Geophys., 173(2), 321–332, doi: 10.1007/s00024-015-1202-y.

Download references

Acknowledgments

This work was entirely supported by the Programa de Riesgo Sísmico (PRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Fuentes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes, M., Riquelme, S., Hayes, G. et al. A Study of the 2015 M w 8.3 Illapel Earthquake and Tsunami: Numerical and Analytical Approaches. Pure Appl. Geophys. 173, 1847–1858 (2016). https://doi.org/10.1007/s00024-016-1305-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1305-0

Keywords

Navigation