Skip to main content
Log in

Evidence of Higher-Order Solar Periodicities in China Temperature Record

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We examine here a 2000-year-long record of surface air temperature from China using powerful spectral and statistical analysis techniques to assess the trend and harmonics, if any. Our analyses reveal statistically significant periodicities of order ~900 ± 50, ~480 ± 20, 340 ± 10, ~190 ± 10 and ~130 ± 5 years, which closely match with the known higher-order solar cycles. These periodicities are also similar to quasi-periodicities reported in the climate records of sedimentary cores of subarctic and subpolar regions of North America and North Pacific, thus attesting to the global signature of solar signals in temperature variability. A visual comparison of the temperature series shows that the nodes and antinodes of the underlying temperature variation also match with sunspot variations. We also compare the China temperature (CT) with temperature of northern and southern hemispheres of the past 1000 years. The study reveals strong correlation between the southern hemispheric temperatures and CT during the past 1000 years. However, the northern hemisphere temperature shows strong correlation with CT only during the past century. Interestingly, the variations in the correlation coefficient also have shown periodicities that are nearly identical to the periods observed from CT and higher-order solar cycles. We suggest that the solar irradiance induces global periodic oscillations in temperature records by transporting heat and thermal energy, possibly through the coupling of ocean–atmospheric processes and thereby reinforcing the Sun–ocean–climate link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Banholzer, S. & Donner, S. (2014). The influence of different El Nino types on global average temperature. Geophysical Research Letters., doi:10.1002/2014GL059520.

  • Bond, G., Kromer, B., Beer, J. et al., (2001). Persistent Solar Influence on North Atlantic Climate during the Holocene. Science, 294, 2130–2136.

  • Chowdary, J. S., John, N., Gnanaseelan, C. (2014). Interannual variability of surface air-temperature over India, impact of ENSO and Indian Ocean Sea surface temperature. Int. J. Climatol., 34, 416–429.

  • Estrada, F., Perron, P., Martinez-Lopez, B. (2013). Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nature Geoscience, 6 (12), 1050–1055.

  • Efron, B., Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 54–75.

  • Foukal, P., Fröhlich, C., Spruit, H., Wigley, T. M. L. (2006). Variations in solar luminosity and their effect on the Earth’s climate. Nature, 443, 161–166, doi:10.1038/nature05072.

  • Frolich. C. & Lean, J. (1998). The sun’s total irradiance cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett., 97, 7579–7591.

  • Ge, Q., Hao, Z., Zheng, J., Shao, X. (2013). Temperature changes over the past 2000 yrs in China and comparison with the Northern Hemisphere. Climate of the Past., 9, 507–523.

  • Ghil, M., Allen. M. R., Dettinger, M. D. et al., (2002). Advanced spectral methods for climatic time series. Rev. Geophys., doi:10.1029/2000RG000092.

  • Ghil, M. & Taricco, C. (1997). Advanced Spectral Analysis Methods. In Past and Present Variability of the Solar-Terrestrial System: Measurement, Data Analysis and Theoretical Models. Cini Castagnoli G, Provenzale A (Eds.), SocietàItaliana di Fisica, Bologna, & IOS Press, Amsterdam.

  • Golyandina, N., Nekrutkin, V., Zhigljavsky, A. A. (2001). Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC Monographs on Statistics & Applied Probability, Taylor & Francis.

  • Hao, Z. X., Zheng, J. Y., Ge, Q. S. (2011). Historical analogues of the 2008 extreme snow event over Central and Southern China. Clim. Res., 50, 161–170, doi:10.3354/cr01052.

  • Hassani, H., Heravi, S., Zhigljavsky, A. A. (2013). Forecasting UK Industrial Production with Multivariate Singular Spectrum Analysis. Journal of Forecasting, 32, 395–408.

  • Helama, S., Macias Fauria, M., Mielikäinen, K. et al., (2010). Sub-Milankovitch solar forcing of past climates: mid and late Holocene perspectives. Geol Soc Am Bull., 122, 1981–1988.

  • Hu, F, S., Kaufman, D., Yoneji, S.et al., (2003). Cyclic Variation and Solar Forcing of Holocene Climate in the Alaskan Subarctic. Science, 301, 1890–1893.

  • Jacobsen, E. & Lyons, R. (2003). The sliding DFT. Signal Processing Magazine, 20(2), 74–80.

  • Kaufmann, R. K. & Stern, D. I, (1997). Evidence for human influence on climate from hemispheric temperature relations. Nature, 388(6637), 39–44.

  • Kerr, R. A. (2001). A Variable Sun Paces Millennial Climate. Science, 294, 1431–1433.

  • Lean, J. & Rind, D. (1999). Evaluating Sun-climate relationships since the Little Ice Age.  J. Atmos. Solar-Terr Phys., 61, 25–36, doi:10.1016/S1364-6826(98)00113-8.

  • Lin, X. C., Yu, S. O., Tang, G. L. (1995). Series of average air temperature over China for the last 100-year period. Sci Atmos Sinica, 19, 525–534.

  • Liu, Y., Cai, O. F., Song, H. M., An, Z. S., Linderholm, H. W. (2011). Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Chin Sci Bul., l6, 2986–2994.

  • Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and space science, 39(2), 447–462.

  • Martín-Chivelet, J., Muñoz-García, M. B., Edwards, R. L, Turrero, M. J., Ortega, A. I. (2011). Land surface temperature changes in Northern Iberia since 4000 yr BP, based on δ 13 C of speleothems. Glob Planet Change, 77, 1–12.

  • Nesme-Ribes, E. & Ferreira, E. N. (1993). Solar dynamic and its impact on solar irradiance and the terrestrial climate. J Geophys Res., 98(18), 923–935.

  • Neukom, R. et al. (2014). Inter-hemispheric temperature variability over the past millennium, Nature Clim. Change 4, 362–367 (2014).

  • Patterson, K., Hassani, H., Heravi, S., Zhigljavsky, A. A. (2011). Multivariate singular spectrum analysis for forecasting revisions to real-time data. Journal of Applied Statistics 38, 2183–2211.

  • Press (2007). Numerical Recipes (3rd Ed.). Cambridge University Press. ISBN 0-521-88068-8.

  • Salzer, M.W. & Kipfmueller, K. F. (2005). Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the Southern Colorado Plateau, USA. Clim Change, 70, 465–487.

  • Sarnthein, M., Vankreveld, S., Erlenkeuser, H. et al., (2003). Centennial-to-millennial-scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N. Boreas, 32, 447–461, doi:10.1111/j.1502-3885.2003.tb01227.x.

  • Scafetta, N. (2012). Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. Journal of Atmospheric and Solar-Terrestrial Physics, 80, 296–311.

  • Schove, D. J. (1983). Sunspot Cycles, Hutchinson Ross Publ Co. Stroudsburg, Pennsylvania.

  • Serita, A., Hattori, K., Yoshino, C., Hayakawa, M., Isezaki, N. (2005). Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes. Natural Hazards and Earth System Sciences, 5, 685–689.

  • Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D., Waple, A. (2001). Solar forcing of regional climate change during the Maunder Minimum. Science, 294, 2149–2152.

  • Solanki, S. K., Usoskin, I. G., Kromer, B. et al., (2004). Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature, 437, 1084–1087.

  • Sonett, C. P. (1984). Very long solar periods and the radiocarbon record. Rev Geophys., 22(3), 239–254.

  • Stuiver, M. (1980). Solar variability and climatic change during the current millennium. Nature, 286, 868–871, doi:10.1038/2868680.

  • Stuiver, M., Braziunas, T. F. (1993). Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. The Holocene, 3(4), 289–305.

  • Tan, M., Liu, T. S., Hou, J. et al., (2003). Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophysical Research Letters, 30, 1617–1620, doi:10.1029/2003GL017352.

  • Tang, G. L., Ding, Y. H., Wang, S. w et al., (2009). Comparative analysis of the time series of surface air temperature over China for the last 100 years. Adv Clim Change Res., 5, 71–78.

  • Taricco, C., Mancuso, S., Ljungqvist, F. C. et al., (2014). Multispectral analysis of Northern Hemisphere temperature records over the last five millennia. Climate Dynamics, doi:10.1007/s00382-014-2331-1.

  • Tiwari, R. K. (2005). Geo spectroscopy. Capital-publishing Company ISBN: 81-85589-17-8.

  • Tiwari, R. K. & Rajesh, R. (2014). Imprint of long-term solar signal in groundwater recharge fluctuation rates from Northwest China. Geophysical Research Letters, 41(9), 3103–3109.

  • Tiwari, R. K., Rajesh, R., Padmavathi, B. (2014). Evidence for Non- linear coupling of Solar and ENSO signals in Indian temperature during the past century. Pure and Applied Geophysics, doi:10.1007/s00024-014-0929-1.

  • Vautard, R., Yiou, P., Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D, 58, 95–126.

  • Weber, S. L., Crowley, T. J., Van der Schrier, G. (2004). Solar irradiance forcing of centennial climate variability during the Holocene. Climate Dynamics, 22, 539–553.

Download references

Acknowledgements

The authors thank Director, CSIR-NGRI for permission to publish this work and are thankful to Prof. Sami K. Solanki for providing sunspot number data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajesh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, R.K., Rajesh, R. & Padmavathi, B. Evidence of Higher-Order Solar Periodicities in China Temperature Record. Pure Appl. Geophys. 173, 2511–2520 (2016). https://doi.org/10.1007/s00024-016-1287-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1287-y

Keywords

Navigation