Skip to main content
Log in

Tsunami Characteristics Along the Peru–Chile Trench: Analysis of the 2015 Mw8.3 Illapel, the 2014 Mw8.2 Iquique and the 2010 Mw8.8 Maule Tsunamis in the Near-field

Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Tsunamis occur quite frequently following large magnitude earthquakes along the Chilean coast. Most of these earthquakes occur along the Peru–Chile Trench, one of the most seismically active subduction zones of the world. This study aims to understand better the characteristics of the tsunamis triggered along the Peru–Chile Trench. We investigate the tsunamis induced by the Mw8.3 Illapel, the Mw8.2 Iquique and the Mw8.8 Maule Chilean earthquakes that happened on September 16th, 2015, April 1st, 2014 and February 27th, 2010, respectively. The study involves the relation between the co-seismic deformation and the tsunami generation, the near-field tsunami propagation, and the spectral analysis of the recorded tsunami signals in the near-field. We compare the tsunami characteristics to highlight the possible similarities between the three events and, therefore, attempt to distinguish the specific characteristics of the tsunamis occurring along the Peru–Chile Trench. We find that these three earthquakes present faults with important extensions beneath the continent which result in the generation of tsunamis with short wavelengths, relative to the fault widths involved, and with reduced initial potential energy. In addition, the presence of the Chilean continental margin, that includes the shelf of shallow bathymetry and the continental slope, constrains the tsunami propagation and the coastal impact. All these factors contribute to a concentrated local impact but can, on the other hand, reduce the far-field tsunami effects from earthquakes along Peru–Chile Trench.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • An, C., Sepúlveda, I., and Liu, P. L. F. (2014). Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Research Letters, 41(11), 3988–3994.

    Article  Google Scholar 

  • Aránguiz, R., González, G., González, J., Catalán, P.A., Cienfuegos, R., Yagi, Y., Okuwaki, R., Urra, L., Contreras, K., Del Rio, I. and Rojas, C. (2016). The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives. Pure Appl. Geophys., 173 (2), 333–348.

    Article  Google Scholar 

  • Berkman, S. C., and Symons, J. M. (1964), The Tsunami of May 22, 1960 as Recorded at Tide Stations. U.S. Department of Commerce, Coast and Geodetic Survey, pp.79.

    Google Scholar 

  • Catalán, P., Aránguiz, R., González, G., Tomita, T., Cienfuegos, R., González, J., Shrivastava, M.N., Kumagai, K., Mokrani, C., Cortés, P. and Gubler, A. (2015). The 1 April 2014 Pisagua tsunami: Observations and modeling. Geophys. Res. Lett., 42(8), 2918–2925.

    Article  Google Scholar 

  • Contreras-López, M., Winckler, P., Sepúlveda, I., Andaurlvarez, A., Cortés-Molina, F., Guerrero, C.J., Mizobe, C.E., Igualt, F., Breuer, W., Beyá, J.F. and Vergara, H. (2016). Field survey of the 2015 Chile tsunami with emphasis on coastal wetland and conservation areas. Pure Appl. Geophys., 173(2), 349–367.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., and Argus, D. F. (2010), Geologically current plate motions. Geophys. J. Int., 181, 1–80.

    Article  Google Scholar 

  • Fritz, H. M., Petroff, C. M., Catalán, P. A., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S.E., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadopulos, A., Contreras, M., Almar, R., Dominguez, J. C., and Synolakis, C. E. (2011). Field survey of the 27 February 2010 Chile tsunami. Pure Appl. Geophys., 168(11), 1989–2010.

    Article  Google Scholar 

  • Fujii, Y., and Satake, K. (2013). Slip distribution and seismic moment of the 2010 and 1960 Chilean earthquakes inferred from tsunami waveforms and coastal geodetic data. Pure Appl. Geophys., 170(9–10), 1493–1509.

    Article  Google Scholar 

  • Geist, E. L., Lynett, P. J., and Chaytor, J. D. (2009), Hydrodynamic modeling of tsunamis from the Currituck landslide. Marine Geology, 264(1), 41–52.

    Article  Google Scholar 

  • Geist, E. L. (2013). Near-field tsunami edge waves and complex earthquake rupture. Pure Appl. Geophys., 170(9–10), 1475–1491.

    Article  Google Scholar 

  • Gusman, A. R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., and Schurr, B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean‐wide tsunami waveforms and GPS data. Geophys. Res. Lett., 42(4), 1053–1060.

    Article  Google Scholar 

  • Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A. R., and Watada, S. (2014). Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile Earthquake. Pure Appl. Geophys., 172(3–4), 719–730.

    Google Scholar 

  • Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., and Gusman A. R. (2015). Source model of the 16 September 2015 Illapel, Chile Mw8.4 earthquake based on teleseismic and tsunami data. Geophys. Res. Lett., 42, doi:10.1002/2015GL067297.

    Google Scholar 

  • Kajiura, K. (1970). Tsunami source, energy and the directivity of wave radiation. Bull. Earthquake Research Institute, 48, 835–869.

    Google Scholar 

  • Kajiura, K. (1981). Tsunami energy in relation to parameters of the earthquake fault model. Bull. Earthquake Research Institute, 56, 415–440.

    Google Scholar 

  • Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981–2987.

    Article  Google Scholar 

  • Lay, T., Ammon, C. J., Kanamori, H., Koper, K. D., Sufri, O., and Hutko, A. R. (2010), Teleseismic inversion for rupture process of the 27 February 2010 Chile (M-w 8.8) earthquake. Geophys. Res. Lett., 37, L13301, doi:10.1029/2010GL043379.

    Article  Google Scholar 

  • Lay, T., Yue, H., Brodsky, E. E., and An, C. (2014), The 1 April 2014 Iquique, Chile, Mw 8.1 earthquake rupture sequence. Geophys. Res. Lett., 41(11), 3818–3825.

    Article  Google Scholar 

  • Lomnitz, C. (2004), Major earthquakes of Chile: a historical survey, 15351960. Seismological Research Letters, 75(3), 368–378.

    Article  Google Scholar 

  • Lorito, S., Romano, F., Atzori, S., Tong, X., Avallone, A., Mccloskey, J., Cocco, M., Boschi, E., and Piayanesi, A. (2011), Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake, Nature Geoscience, 4(3), 173–177.

    Article  Google Scholar 

  • Miranda, J.M., Luis, J., Reis, C., Omira, R., and Baptista, M.A. (2014), Validation of NSWING, a multi-core finite difference code for tsunami propagation and run-up. American Geophysical Union (AGU) Fall Meeting, San Francisco. Paper Number : S21A-4390. Session Number and Title: S21A, Natural Hazards.

  • Moreno, M., Rosenau, M., and Oncken, O. (2010), 2010 Maule earthquake slip correlates with pre-seismic locking of Andean subduction zone, Nature, 467(7312), 198–202.

    Article  Google Scholar 

  • NOAA (2015), https://www.ngdc.noaa.gov/hazard/16sep2015.html. last accessed 20/11/2015.

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull Seismol. Soc. Am., 75(4), 1135–1154.

    Google Scholar 

  • Okal, E. A., and Synolakis, C. E. (2003). A theoretical comparison of tsunamis from dislocations and landslides, Pure Appl. Geophys., 160(10–11), 2177–2188.

    Article  Google Scholar 

  • Omira, R., Vales, D., Marreiros, C., and Carrilho, F. (2015). Large submarine earthquakes that occurred worldwide in a 1-year period (June 2013 to June 2014)a contribution to the understanding of tsunamigenic potential, Nat. Hazards Earth Syst. Sci., 15, 2183–2200.

    Article  Google Scholar 

  • Pollitz, F.F., Brooks, B., Tong, X., Bevis, M.G., Foster, J.H., Bürgmann, R., Smalley, R., Vigny, C., Socquet, A., Ruegg, J.C. and Campos, J. (2011). Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile earthquake, Geophys. Res. Lett., 38(9), doi:10.1029/2011GL047065.

    Google Scholar 

  • Pulido, N., Yagi, Y., Kumagai, H., and Nishimura, N. (2011). Rupture process and coseismic deformations of the 27 February 2010 Maule earthquake, Chile, Earth Planets and Space, 63(8), 955–959.

    Article  Google Scholar 

  • Rabinovich, A. B., and Thomson, R. E. (2007). The 26 December 2004 Sumatra tsunami: Analysis of tide gauge data from the world ocean Part 1. Indian Ocean and South Africa. Pure Appl. Geophys., 164, 261–308.

    Article  Google Scholar 

  • Rabinovich, A.B., Candella, R.N., and Thomson, R.E. (2013a). The open ocean energy decay of three recent trans-Pacific tsunamis, Geophys. Res. Lett., 40(12):3157–3162.

    Article  Google Scholar 

  • Rabinovich, A.B., Thomson, R.E. and Fine, I.V. (2013b). The 2010 Chilean tsunami off the west coast of Canada and the northwest coast of the United States, Pure App. Geophys., 170(9–10), 1529–1565.

    Article  Google Scholar 

  • Saito, T., Matsuzawa, T., Obara, K., and Baba, T. (2010). Dispersive tsunami of the 2010 Chile earthquake recorded by the high‐sampling‐rate ocean‐bottom pressure gauges, Geophys. Res. Lett., 37(23). L23303, doi:10.1029/2010GL045290.

    Article  Google Scholar 

  • Tong, X. P., Sandwell, D., Luttrell, K., Brooks, B., Bevis, M., Shimada, M., Foster, J., Smalley, R., Parra, H., Soto, J. C. B., Blanco, M., Kendrick, E., Genrich, J., and Caccamise, D. J. (2010), The 2010 Maule, Chile earthquake: Downdip rupture limit revealed by space geodesy, Geophys. Res. Lett., 37. L24311, doi:10.1029/2010GL045805.

    Article  Google Scholar 

  • USGS (2014), US Geological Survey, M8.2 and Aftershocks Offshore Northern Chile Earthquake of 1 April 2014, available at: http://earthquake.usgs.gov/earthquakes/eqarchives/poster/2014/20140401.pdf , last accessed 10/01/2016.

  • USGS (2015), US Geological Survey, earthquake general summary available at: http://earthquake.usgs.gov/earthquakes/eventpage/us20003k7a#general_summary , last accessed 20/11/2015.

  • Wu, T.-R. and Ho, T.-C. (2011). High resolution tsunami inversion for 2010 Chile earthquake, Nat. Hazards Earth Syst. Sci., 11, 3251–3261.

    Article  Google Scholar 

  • Yamazaki, Y., and Cheung, K. F. (2011). Shelf resonance and impact of near-field tsunami generated by the 2010 Chile earthquake, Geophys. Res. Lett., 38(12), L12605, doi:10.1029/2011GL047508.

    Article  Google Scholar 

  • Yagi, Y., Okuwaki, R., Enescu, B., Hirano, S., Yamagami, Y., Endo, S., and Komoro, T. (2014). Rupture process of the 2014 Iquique Chile Earthquake in relation with the foreshock activity. Geophys. Res. Lett., 41(12), 4201–4206.

    Article  Google Scholar 

  • Ye, L., Lay, T., Kanamori, H., and Koper, K. D. (2016). Rapidly Estimated Seismic Source Parameters for the 16 September 2015 Illapel, Chile Mw 8.3 Earthquake. Pure App. Geophys., 173(2), 321–332.

Download references

Acknowledgments

This work is funded by project ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe, Grant 603839, 7th FP (ENV.2013.6.4-3). The authors would like to thank the colleagues from the USA National Oceanographic and Atmospheric Administration (NOAA) for making available the DART stations records used in this study. We also thank J. M. Miranda for the internal review of the manuscript. We are grateful to the Editor A. Rabinovich, to E. Geist and to the anonymous reviewer for their timely and helpful reviews, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Omira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omira, R., Baptista, M.A. & Lisboa, F. Tsunami Characteristics Along the Peru–Chile Trench: Analysis of the 2015 Mw8.3 Illapel, the 2014 Mw8.2 Iquique and the 2010 Mw8.8 Maule Tsunamis in the Near-field. Pure Appl. Geophys. 173, 1063–1077 (2016). https://doi.org/10.1007/s00024-016-1277-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1277-0

Keywords

Navigation