Skip to main content
Log in

Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Alonso E.E., (2012). Deformation analysis of landslides: progressive failure, rate effects and thermal interactions. Landslides and Engineered Slopes: Protecting society through improved understanding. Eberhardt et al. (eds). Taylor & Francis, London, 175–214.

  • Angeli M. G., Pontoni, F., (2000). The innovative use of a large diameter microtunneling technique for the deep drainage of a great landslide in an inhabited area: the case of Assisi (Italy). Landslides in research, theory and practice. Thomas Telford, London, 1666–1672.

  • Angeli M. G., Pontoni, F., (1999). Relazione geologica (Technical Report), 45 pp. (in Italian).

  • Antonini G., Ardizzone, F., Cacciano, M., Cardinali, M., Castellani, M., Galli, M., Guzzetti, F., Reichenbach, P., Salvati, P., (2002). Rapporto Conclusivo Protocollo d’Intesa fra la Regione dell’Umbria, Direzione Politiche Territoriali Ambiente e Infrastrutture, ed il CNR-IRPI di Perugia per l’acquisizione di nuove informazioni sui fenomeni franosi nella regione dell’Umbria, la realizzazione di una nuova carta inventario dei movimenti franosi e dei siti colpiti da dissesto, l’individuazione e la perimetrazione delle aree a rischio da frana di particolare rilevanza, e l’aggiornamento delle stime sull’incidenza dei fenomeni di dissesto sul tessuto insediativo, infrastrutturale e produttivo regionale. Unpublished Project Report, May 2002, 140 pp (in Italian).

  • Bagnold et al. (1954). Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid under Shear, Proc. R. Soc. Lond. A August 6, 1954 225 1160 49–63.

  • Bingul Z., Sekmen A., Zein-Sabatto S., (2000). Evolutionary approach to multi-objective problems using adaptive genetic algorithms, Systems, Man, and Cybernetics, 2000 IEEE International Conference on, pp. 1923–1927, vol. 3.

  • Bonano M., Manunta M., Marsella M., Lanari R., (2012). Long Term ERS/ENVISAT Deformation Time-Series Generation at Full Spatial Resolution via the Extended SBAS Technique, Int. J. Remote Sens., 33, 15, pp. 4756–4783, Feb. 2012, doi:10.1080/01431161.2011.638340.

  • Calò F., Calcaterra, D., Iodice, A., Parise, M., Ramondini, M., (2012). Assessing the activity of a large landslide in southern Italy by ground-monitoring and SAR interferometric techniques. International Journal of Remote Sensing, 33:11, 3512–3530.

  • Calò F., Ardizzone F., Castaldo R., Lollino P., Tizzani P., Guzzetti F., Lanari R., Angeli M-C., Pontoni F., Manunta M., (2014). Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy. Remote Sensing of Environment, 142, pp. 69–82.

  • Canuti P., Marcucci, E., Trastulli, S., Ventura, P., Vincenti, G., (1986). Studi per la stabilizzazione della frana di Assisi. National Geotechnical Congress, Bologna, 14–16 May 1986, Vol. 1, 165–174.

  • Cardinali M., Antonini G., Reichenbach P., Guzzetti, F., (2001). Photo-geological and landslide inventory map for the Upper Tiber River basin. CNR, Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche, Publication n. 2154, scale 1:100,000.

  • Cascini L., Fornaro G., Peduto D., (2009). Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 598–611, doi:10.1016/j.isprsjprs.2009.05.003.

  • Cascini L., Fornaro G., Peduto D., (2010). Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Engineering Geology, 112 (1–4), 29–42, doi:10.1016/j.enggeo.2010.01.003.

  • Chen C.L. and Ling C.H., (1996). Granular-flow rheology: role of shear-rate number in transition regime. J. Eng. Mech. ASCE, 122, No. 5, 469–481.

  • Conte E. and A. Troncone (2011). Analytical method for predicting the mobility of slow-moving landslides owing to groundwater fluctuations. J. Geotech. Geoenv. Eng. ASCE, 777–784.

  • Crosta G.B., Castellanza R., Frattini, P., Broccolato M., Bertolo, D., Cancelli P., Tamburini A., (2012). Comprehensive understanding of a rapid moving rockslide: the Mt de la Saxe landslide. MIR 2012, Nuovi metodi di indagine monitoraggio e modellazione degli ammassi rocciosi, Barla, G. Ed., Torino, 21–22 novembre 2012, 20 pp.

  • Cruden D.M., Varnes D.J., (1996). Landslide types and processes. In: Turner, A.K., Schuster, R.L. (eds.) 1996 Landslides, Investigation and Mitigation, Transportation Research Board Special Report 247, Washington, D.C., pp. 36–75.

  • Di Maio C., Vassallo R., Vallario M. (2013). Plastic and viscous shear displacements of a deep and very slow landslide in stiff clay formation. Engineering Geology, 162, 53–66.

  • Farina P., Colombo D., Fumagalli A., Marks F., Moretti, S., (2006). Permanent scatters for landslide investigations: outcomes from the ESA-SLAM project. Engineering Geology, 88, 200–217.

  • Fastellini G., Radicioni F., Stoppini A., (2011). The Assisi landslide monitoring: a multi-year activity based on geomatic techniques, Applied Geomatics, 3(2), 91–100, doi:10.1007/s12518-010-0042-9.

  • Felicioni G., Martini E., Ribaldi C., (1996). Studio dei Centri Abitati Instabili in Umbria. Rubettino Publisher, 418 pp (in Italian).

  • Gill Ph., Murry W., Wright M., (1981), Practical Optimization. Academic.

  • Griffiths D. V., Lane P. A., (1999). Slope stability analysis by finite elements. Geotechnique 49, No. 3, 387–403.

  • Guzzetti F., Manunta M., Ardizzone F., Pepe A., Cardinali M., Zeni G., Reichenbach P., Lanari R., (2009). Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, central Italy. Pure and Applied Geophysics 166, 1425–1459, doi:10.1007/s00024-009-0491-4.

  • Hilley G., Bürgmann R., Ferretti A., Novali F., Rocca F., (2004). Dynamics of slow-moving landslides from permanent scatterer analysis. Science, 304, 1952–1955, doi:10.1126/science.1098821.

  • Hunt M.L., Zenit, R., Campbell C.S, Brennen C.E., (2002). Revisiting the 1954 suspension experiments of R. A. Bagnold. J. Fluid Mech. 452, 1–24.

  • Ledesma A., Corominas J., Gonzales DA., Ferrari A., (2009). Modelling slow moving landslide controlled by rainfall. In Picarelli L., Tommasi P., Urciuoli G., Versace P. (eds) Proceedings of the 1st Italian Workshop on Landslides, rainfall-induced Landslides: mechanisms, monitoring techniques and nowcasting models for early warning systems, Naples, 8–10 June 2009, vol. 1, pp. 196–205.

  • Leroueil S., (2001). Natural slopes and cuts: movement and failure mechanisms. Géotechnique, Volume 51, Issue 3, pages 197–243.

  • Lollino, P., Santaloia F., Amorosi A., and Cotecchia F. (2011). Delayed failure of quarry slopes in stiff clays: The case of the Lucera landslide. Géotechnique, 61(10), 861–874.

  • Manconi A., Tizzani P., Zeni G., Pepe S. and Solaro G., (2009). Simulated Annealing and Genetic Algorithm Optimization using COMSOL Multiphysics: Applications to the Analysis of Ground Deformation in Active Volcanic Areas. Excerpt from the Proceedings of the COMSOL Conference.

  • Pastor M., Quecedo M., Fernandez-Merodo J.A., Herreros M.I., Gonzalez E., Mira P., (2002). Modelling tailing dams and mine waste dumps failures. Geotechnique 52 (8): 579–591.

  • Perzyna P., (1966). Fundamental Problems in viscoplasticity. Rec. Adv. Appl. Mech. 9, 243–377. Academic, New York.

  • Pontoni, F., (1999). Unpublished Technical Report, 45 pp (in Italian).

  • Pontoni, F., (2011). Geoequipe Studio Tecnico Associato Geologia—Ingegneria. Unpublished Technical Report, 4 pp. (in Italian).

  • Renzhiglov N. F. and T. V. Pavlishcheva, (1970). On the viscosity of rocks. Soviet Mining September–October, 1970, Volume 6, Issue 5, pp 582–585.

  • Servizio Geologico Italiano, (1980). Carta Geologica dell’Umbria. Map at 1:250,000 scale (in Italian).

  • Ter-Stepanian G. (1975). Creep of a clay during shear and its rheological model. Géotechnique, 25 (2), 299–320.

  • Tizzani P., Manconi A., Zeni G., Pepe A., Manzo M., Camacho A., and J. Fernández, (2010). Long-term versus short-term deformation processes at Tenerife (Canary Islands), J. Geophys. Res., 115, B12412, doi:10.1029/2010JB007735.

  • Tizzani P., Castaldo R., Solaro G., Pepe S., Bonano M., Casu F., Manunta M., Manzo M., Pepe A., Samsonov S., Lanari R., Sansosti E., (2013). New insights into the 2012 Emilia (Italy) seismic sequence through advanced numerical modeling of ground deformation InSAR measurements, Geophysical Research Letters, Volume 40, Issue 10, pages 1971–1977.

  • Troncone A., (2005). Numerical analysis of a landslide in soils with strain-softening behaviour. Géotechnique, 55(8), 585–596.

  • Vulliet L., Hutter K. (1988). Viscous-type sliding laws for landslides. Canadian Geotechnical Journal, 25, 467–477.

  • Zhang Z., Zhu J.Z., (1998). Analysis of the superconvergent patch recovery technique and a posteriori error estimator in the finite element method (II). Comput. Methods Appl. Mech. Eng. 163, 159–170.

  • Zienkiewicz O.C., Taylor R.L., (1988). The Finite Element Method: Basic Formulation and Linear Problems, Volume 1. McGraw-Hill.

Download references

Acknowledgments

Work conducted in the framework of DORIS (Contract no. 242212) and LAMPRE (Contract no. 312384) EC FP7 projects. F. Calò and R. Castaldo were supported by grants of DORIS and LAMPRE projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Castaldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castaldo, R., Tizzani, P., Lollino, P. et al. Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry. Pure Appl. Geophys. 172, 3067–3080 (2015). https://doi.org/10.1007/s00024-014-1008-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-1008-3

Keywords

Navigation