Skip to main content
Log in

Body Wave Crustal Attenuation Characteristics in the Garhwal Himalaya, India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We estimate frequency-dependent attenuation of P and S waves in Garhwal Himalaya using the extended coda normalization method for the central frequencies 1.5, 2, 3, 4, 6, 8, 10, 12, and 16 Hz, with earthquake hypocentral distance ranging from 27 to 200 km. Forty well-located local earthquake waveforms were used to study the seismic attenuation characteristics of the Garhwal Himalaya, India, as recorded by eight stations operated by Wadia Institute of Himalayan Geology, Dehradun, India, from 2007 to 2012. We find frequency-dependent P and S wave quality factors as defined by the relations Q P = 56 ± 8f 0.91±0.002 and Q S = 151 ± 8f 0.84±0.002 by fitting a power-law frequency dependence model for the estimated values over the whole region. Both the Q P and Q S values indicate strong attenuation in the crust of Garhwal Himalaya. The ratio of Q S/Q P > 1 obtained for the entire analyzed frequency range suggests that the scattering loss is due to a random and high degree of heterogeneities in the earth medium, playing an important role in seismic wave attenuation in the Himalayan crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Fattah, A.K. (2009), Attenuation of body waves in the crust beneath the vicinity of Cairo Metropolitan area (Egypt) using coda normalization method, J. Geophys. Int. 176, 126–134.

  • Aki, K. (1969), Analysis of the seismic coda of local earthquakes as scattered waves, J. Geophys. Res. 74, 615–631.

  • Aki, K. (1980), Attenuation of shear waves in the lithosphere for frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Interiors 21, 50–60.

  • Aki, K., and Chouet, B. (1975), Origin of the coda waves: source, attenuation, and scattering effects, J. Geophys. Res. 80, 3322–3342.

  • Aki, K. (1992), Scattering conversion P to S vs. S to P, Bull Seismol. Soc. Am. 82, 1969–1972.

  • Akinci, A., Del Pezzo, E, and Ibanez, J. M. (1995), Separation of scattering and intrinsic attenuation in southern Spain and western Anatolia (Turkey). Geophys. J. Int. 121(2), 337–353.

  • Akinci, A, and Eyidogan, H. (2000), Scattering and anelastic attenuation of seismic energy in the vicinity of north Anatolian fault zone, eastern Turkey, Phys. Earth Planet. Interiors 122(3), 229–239.

  • Anderson, D. L., Ben-menahem, A., Archambeau, C. B. (1965), Attenuation of seismic energy in the upper mantle, J. Geophys. Res. 70, 1441–1448.

  • Ashish, P. A., Rai, S. S., Gupta, S. (2009), Seismological evidence for shallow crustal melt beneath the Garhwal High Himalaya, India: implications for the Himalayan channel flow, Geophys. J. Int. 177(1), 1111–1120.

  • Bhattarai, D. R. (1980), Some geothermal springs of Nepal. Tectonophysics, 62(1), 7–11.

  • Bianco, F., Castellano, M., Del Pezzo, E., Ibañez, J.M. (1999), Attenuation of short-period seismic waves at Mt. Vesuvius, Italy, Geophys. J. Int. 138, 67–76.

  • Bindi, D., Parolai, S., Grosser, H., Milkereit, C., Karakisa, S. (2006), Crustal attenuation characteristics in northwestern Turkey in the range from 1 to 10 Hz, Bull. Seismol. Soc. Am. 96(1), 200–214.

  • Caldwell, W. B., Klemperer, S. L., Lawrence, J. F, and Rai, S. S. (2013), Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking, Earth Planet Sci. Lett. 367, 15–27.

  • Campillo, M., Plantet, J.-L., Bouchon, M. (1985), Frequency-dependent attenuation in the crust beneath central France from Lg waves: data analysis and numerical modeling, Bull. Seismol. Soc. Am. 75, 1395–1411.

  • Canas, J. A., Ugalde, A., Pujades, L. G., Carracedo, J. C., Soler, V., Blanco, M. J., (1998), Intrinsic and scattering seismic wave propagation in the Canary Islands, J. Geophys. Res. Sol. Ea. 103, 15037–15050.

  • Castro, R. R., Munguia, L. (1993), Attenuation of P and S waves in the Oaxaca, Mexico, subduction zone, Phys. Earth Planet. Interiors 76(3), 179–187.

  • Chin, B. H., and Aki, K. (1991), Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 Loma Prieta earthquake: a preliminary result on pervasive nonlinear site effects, Bull. Seismol. Soc. Am. 81(5), 1859–1884.

  • Chopra, S., Kumar, D, and Rastogi, B. K. (2011) Attenuation of high frequency P and S waves in the Gujarat region, India, Pure Appl. Geophys. 168(5), 797–813.

  • Chung, T.W., and Sato, H. (2001), Attenuation of high-frequency P and S waves in the crust of southeastern South Korea, Bull. Seismol. Soc. Am. 91, 1867–1874.

  • De lorenzo S., Bianco F., Del Pezzo E. (2013), Frequency dependent Q α and Q β in the Umbria- Marche (Italy) region using a quadratic approximation of the coda normalization method, Geophys. J. Int. 193,1726–1731

  • Derry, L. A., Evans, M. J., Darling, R., and France-Lanord, C. (2009), Hydrothermal heat flow near the Main Central thrust, central Nepal Himalaya, Earth Planet. Sci. Lett. 286(1), 101–109.

  • Fedotov, S.A., and Boldyrev, S.A. (1969), Frequency dependence of the body-wave absorption in the crust and the upper mantle of the Kuril Island chain, Izv. Akad. Nauk USSR 9, 17–33.

  • Frankel, A., and Wennerberg, L. (1987), Energy-flux model of seismic coda: separation of scattering and intrinsic attenuation, Bull Seismol. Soc. Am. 77, 1223–1251.

  • Frankel, A., Mcgarr, A., Bicknell, J., Mori, J., Seeber, L., and Cranswick, E. (1990), Attenuation of high frequency shear waves in the crust: measurements from New York State, South Africa, and Southern California. J. Geophys. Res.-Sol. Ea. 95(B11), 17441–17457.

  • Frankel, A. (1991), Mechanisms of seismic attenuation in the crust: scattering and anelasticity in New York, South Africa, and Southern California, J. Geophys. Res. – Sol. Ea. 96, 6269–6289.

  • Gansser, A. (1964), Geology of the Himalayas, London, Wiley Interscience, pp. 289.

  • Giampiccolo, E., Tuvè, T., Gresta, S., Patane, D., 2006. S-waves attenuation and separation of scattering and intrinsic absorption of seismic energy in southeastern Sicily (Italy), Geophys. J. Int. 165, 211–222.

  • Gupta, S. C., and Kumar, A. (2002), Seismic wave attenuation characteristics of three Indian regions: a comparative study, Curr. Sci., 82(4), 407–412.

  • Gupta, S. C., Singh, V. N., Kumar, A. (1995) Attenuation of coda waves in the Garhwal Himalaya, India, Phys. Earth Planet. Interiors 87(3), 247–253.

  • Gupta, S. C., Teotia, S. S., Rai, S. S., Gautam, N. (1998), Coda Q estimates in the Koyna region, India, In Q of the Earth: Global, Regional, and Laboratory Studies, Birkhäuser Basel (pp. 713–731).

  • Hatzidimitriou, P. M. (1995), S-wave attenuation in the crust in northern Greece, Bull. Seismol. Soc. Am. 85(5), 1381–1387.

  • Hauck, M., Nelson, K., Brown, L., Zhao, W., Ross, A. (1998), Crustal structure of the Himalayan orogen at 90 east longitude from Project INDEPTH deep reflection profiles, Tectonics. 17, 481–500.

  • Hauksson, E., and Shearer P. M. (2006) Attenuation models (Qp and Qs) in three dimensions of the southern California crust: inferred fluid saturation at seismogenic depths. J. Geophys. Res. – Sol. Ea. 111: B05302, doi:10.1029/2005JB003947

  • Herraiz, M., and Espinoza A. F. (1987), Coda waves: a review, Pure Appl. Geophys. 125, 499–577.

  • Herrmann, R. B. (1980), Q estimates using the coda of local earthquakes, Bull. Seismol. Soc. Am. 70, 447–468.

  • Hough, S. E., and Anderson, J. G. (1988) High-frequency spectra observed at Anza, California: implications for Q structure. Bull. Seismol. Soc. Am. 78(2), 692–707.

  • Hough, S.E., Anderson, J.G., Brune, J., Vernon, F., II, Berger, J., Fletcher, J., haar, L., hanks, T., baker, L. (1988), Attenuation near Anza, California, Bull. Seismol. Soc. Am. 78, 672–691.

  • Ishida, M. (1992), Geometry and relative motion of the Philippine Sea plate and Pacific plate beneath the Kanto-Tokai district, Japan, J. Geophys. Res.-Sol. Ea. 97, 489–513.

  • Jeffreys, H. (1965), Damping of S waves, Nature. 208, 675.

  • Joshi, A. (2006), Use of acceleration spectra for determining the frequency-dependent attenuation coefficient and source parameters, Bull. Seismol. Soc. Am. 96(6), 2165–2180.

  • Karato, S. I. (1993), Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res. Lett. 20(15), 1623–1626.

  • Kayal, J. R. (1996), Precursor seismicity, foreshocks and aftershocks of the Uttarkashi earthquake of October 20, 1991 at Garhwal Himalaya, Tectonophysics. 263(1), 339–345.

  • Kayal, J. R. (2001), Microearthquake activity in some parts of the Himalaya and the tectonic model, Tectonophysics. 339(3), 331–351.

  • Khan, P. K. (2003), Stress state, seismicity and subduction geometry of the descending lithosphere below the Hindukush and Pamir, Gondwana Res. 6, 867–877.

  • Kim, K. D., Chung, T.W., Kyung, J. B. (2004), Attenuation of high-frequency P and S waves in the crust of Choongchung provinces, Central South Korea. Bull. Seismol. Soc. Am. 94, 1070–1078.

  • Kohketsu, K., Shima, E. (1985), Q P structure of sediments in the Kanto plain, Bull Earthq. Res. Inst. Univ. Tokyo. 60, 495–505.

  • Kumar, N., Sharma, J., Arora, B. R., Mukhopadhyay, S. (2009), Seismotectonic model of the KangraChamba sector of Northwest Himalaya: constraints from joint hypocenter determination and focal mechanism, Bull. Seismol. Soc. Am. 99(1), 95–109.

  • Kumar, N., Parvez, I.A., Virk, H.S. (2005), Estimation of coda wave attenuation for NW Himalayan region using local earthquakes, Phys. Earth Planet. Interiors 151, 243–258.

  • Kumar, N., Mate, S., Mukhopadhyay, S. (2014), Estimation of Qp and Qs of Kinnaur Himalaya, J. Seismol. 18(1), 47–59.

  • Kvamme, L. B. and Havskov, J. (1989), Q in southern Norway, Bull Seismol. Soc. Am. 79, 1575–1588.

  • Lave, J., and Avouac, J. P. (2001), Fluvial incision and tectonic uplift across the Himalayas of central Nepal, J. Geophys. Res - Sol. Ea. 106 (B11), 26561–26591. Am. J. Sci. 275:1–44

  • Leary, P. C. (1995), Quantifying crustal fracture heterogeneity by seismic scattering. Geophys. J. Int. 122, 125–142.

  • Lienert, B. R., Berg, B. E., Frazer, L. N. (1986), Hypocenter: an earthquake location method using centered, scaled and adaptively damped least squares, Bull. Seismol. Soc. Am. 76, 771–783.

  • Liu, H. P., Anderson, D. L., and Kanamori, H. (1976), Velocity dispersion due to anelasticity; implications for seismology and mantle composition, Geophys. J. Int. 47(1), 41–58.

  • Lomnitz, C. (1957). Linear dissipation in solids. J. Appl. Phys. 28(2), 201–205.

  • Lowrie, W. (1997), Fundamentals of Geophysics, Cambridge University Press, Cambridge, p. 354.

  • Ma’hood, M., Hamzehloo, H., Doloei, G.J. (2009), Attenuation of high frequency P and S waves in the crust of the East-Central Iran, Geophys. J. Int. 179, 1669–1678.

  • Mahesh, P., Rai, S. S., Sivaram, K., Paul, A., Gupta, S., Sharma, R., and Gaur, V. K. (2013), One dimensional reference velocity model and precise locations of earthquake hypocenters in the KumaonGarhwal Himalaya, Bull. Seismol. Soc. Am. 103(1), 328–339.

  • Mandal, P., and Rastogi, B. K. (1998), A frequency-dependent relation of coda Qc for Koyna-Warna region, India. Pure Appl. Geophys. 153, 163–177.

  • Mandal, P., Padhy, S., Rastogi, B. K., Satyanarayana, H. V. S., Kousalya, M., Vijayraghvan, R., and Srinavasan, A. (2001), Aftershock activity and frequency dependent low coda Qc in the epicentral region of the 1999 Chamoli earthquake of Mw 6.4, Pure Appl. Geophys. 158, 1719–1735.

  • Mandal, P., Jainendra, Joshi, S., Kumar, S., Bhunia, R., and Rastogi, B.K. (2004), Low coda Qc in the epicentral region of the 2001 Bhuj earthquake of Mw 7.7, Pure Appl. Geophys., 161, 1635–1654.

  • Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K., Zeng, Y. (1992), A comparative study of scattering, intrinsic and coda 1/Q for Hawaii, Long Valley and Central California between 1.5 and 15.0 Hz, J. Geophys. Res. Sol. Ea. 97, 6643–6660.

  • Mitchell, B.J. (1995), Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation, Rev. Geophys. 33, 441–462.

  • Molnar. P. and Tapponier, P. (1975), Cenozoic tectonics of Asia: effects of a continental collision, Science. 189, 419–426.

  • Monsalve, G., Sheehan, A., Schulte-pelkum, V., Rajaure, S.,Pandey, M. R., and Wu, F. (2006), Seismicity and one-dimensional velocity structure of the Himalayan collision zone: earthquakes in the crust and upper mantle, J. Geophys. Res. 111, B10301; doi:10.1029/2005JB004062.

  • Mukhopadhyay, S., Tyagi C., Rai S. S. (2006), The attenuation mechanism of seismic waves for NW Himalaya, Geophys, J. Int. 167:354–360.

  • Mukhopadhyay, S., Sharma, J., Massey, R., Kayal, J.R. (2008), Lapse time dependence of coda Q in the source region of the 1999 Chamoli earthquake, Bull. Seismol. Soc. Am. 98, 2080–2086.

  • Mukhopadhyay, S., Sharma, J., Del-pezzo, E., Kumar, N. (2010), Study of attenuation mechanism for GarwhalKumaun Himalayas from analysis of coda of local earthquakes, Phys. Earth Planet. Interiors 180, 7–15.

  • Mukhopadhyay, S., and Sharma, J. (2010), Crustal scale detachment in the Himalayas: a reappraisal, Geophys. J. Int. 183(2), 850–860.

  • Nandy, D.R., and Dasguptha, S. (1991), Seismotectonic domains of northeastern India and adjacent areas, Phys. Chem. Earth. 18, 371–384.

  • Nath, S.K., Shukla, K., and Vyas, M. (2008), Seismic hazard scenario and attenuation model of the Garhwal Himalaya using near-field synthesis from weak motion seismometry, J. Earth. Sys. Sci. 117(2), 649–670.

  • Ni, J., Barazangi, M. (1984), Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian plate beneath the Himalaya, J. Geophys. Res. 89, 1147–1163.

  • Novelo-Casanova, D. A. and Lee, W. H. K. (1991). Comparison of techniques that use the single scattering model to compute the quality factor Q from coda waves, Pure Appl. Geophys.135, 77–89.

  • Oohashi, K., Hirose, T., and Shimamoto, T. (2013), Graphite as a lubricating agent in fault zones: an insight from low to high velocity friction experiments on a mixed graphite quartz gouge, J. Geophys. Res. - Sol. Ea.118 (5), 2067–2084.

  • Padhy, S. (2009), Characteristics of body wave attenuations in the Bhuj crust, Bull. Seismol. Soc. Am. 99, 3300–3313.

  • Padhy, S., and Subhadra, N. (2010), Frequency-dependent attenuation of P and S waves in northeast India, Geophys. J. Int. 183(2), 1052–1060.

  • Pandey, M. R., Tandulkar, R. P., Avouac, J. P., Vergne, J. and Heritier, T.H. (1999), Seismotectonics of the Nepal Himalaya from a local seismic network, J. Asian Earth Sci. 17, 703–712.

  • Paul, A., Gupta, S.C., Pant, C. (2003), Coda Q estimates for Kumaun Himalaya, Earth Planet. Sci. 112, 569–576.

  • Paul, A., Wason. H.R., Sharma, M.L., Pant, C. C., Nirwani, A., Tripathi, H.B. (2004), Seismotectonic implications of data recorded by DTSN in the Kumaun Region of Himalaya, J. Geol. Soc. India 64, pp. 43–51.

  • Phillips, W. S. and aki, K. (1986), Site amplification of coda waves from local earthquakes in central California, Bull. Seismol. Soc. Am. 76, 627– 648.

  • Randall, M. J. (1976), Attenuative dispersion and frequency shifts of the earth’s free oscillations, Phys. Earth Planet. Interiors. 12(1), P1–P4.

  • Rastogi, B.K. (2000), Chamoli earthquake of Magnitude 6.6 on 29 March, 1999, J. Geol. Soc. India. 55, 505–514.

  • Rautian, T.G., Khalturin, V.I. (1978a), The use of the coda for the determination of the earthquake source spectrum, Bull. Seismol. Soc. Am. 68, 923–948.

  • Rautian, T.G., Khalturin, V.I., Martynov, V.G., Molnar, P. (1978b), Preliminary analysis of the spectral content of P and S waves from local earthquakes in the Garm, Tadjikistan region, Bull. Seismol. Soc. Am. 68, 949–971.

  • Rawat, R., and Sharma, R. (2011), Features and characterization of graphite in Almora Crystallines and their implication for the graphite formation in Lesser Himalaya, India, J. Asian Earth Sci. 42(1), 51–64.

  • Roecker, S. W., Tucker, B., King, G., Hatzfeld, D. (1982), Estimates of Q in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes, Bull. Seismol. Soc. Am. 72, 129–149.

  • Rovelli, A., Marcucci, S., Milana, G. (1988), The objective determination of the instantaneous predominant frequency of seismic signals and inferences on Q of coda waves, Pure Appl. Geophys. 128(1-2), 281–293.

  • Sachan, H. K., Sharma, R., Sahai, A., Gururajan, N. S. (2001). Fluid events and exhumation history of the main central thrust zone Garhwal Himalaya (India). J. Asian Earth Sci. 19(1), 207–221.

  • Sato, H. (1977), Energy propagation including scattering effect: single isotropic scattering approximation, J. Phys. Earth. 25, 27–41.

  • Sato, H., Fehler, M.C. (1998), Seismic Wave Propagation and Scattering in the Heterogeneous Earth, Springer, New York. 308 pp.

  • Sato, H. (1990), Unified approach to amplitude attenuation and coda excitation in the randomly inhomogeneous lithosphere, Pure Appl. Geophys. 132, 93–121.

  • Schelling, D., and Arita, K. (1991), Thrust tectonics, crustal shortening, and the structure of the far eastern Nepal Himalaya, Tectonics. 10(5), 851–862.

  • Searle, M.P. (1986), Structural evolution and sequence of thrusting in the High Himalayan, TibetanTethys and Indus suture zones of Zanskar and Ladakh, Western Himalaya, J. Struct. Geol. 8(8), 923–936.

  • Searle, M. P., Law, R. D., Godin, L., Larson, K. P., Streule, M. J., Cottle, J. M., Jessup, m. J. (2008), Defining the Himalayan main central thrust in Nepal, J. Geol. Soc. 165(2), 523–534.

  • Sharma, B., Teotia, S.S., Kumar, D. (2007), Attenuation of P, S, and coda waves in Koyna region, India. J. Seismol. 11, 327–334.

  • Sharma, B., Teotia, S. S., Kumar, D., and Raju, P. S. (2009), Attenuation of P-and S-waves in the Chamoli Region, Himalaya, India, Pure Appl. Geophys. 166(12), 1949–1966.

  • Singh, C., Singh, A., Mukhopadhyay, S., Sekhar, M., Chadha, R.K. (2011). Lg attenuation characteristics across the Indian Shield, Bull. Seismol. Soc. Am.101, 2561–2567.

  • Singh, C., Singh, A., Bharathi, V. K., Bansal, A. R., Chadha, R. K. (2012), Frequency dependent body wave attenuation characteristics in the Kumaun Himalaya, Tectonophysics. 524, 37–42.

  • Taylor, S. R., Bonner, B. P., and Zandt, G. (1986), Attenuation and scattering of broadband P and S waves across North America, J. Geophys. Res. - Sol. Ea. (1978–2012), 91(B7), 7309–7325.

  • Thakur, V. C., and Rawat, B. S. (1992), Geological Map of the Western Himalaya 1:1,200,000, Pergamon, 1992.

  • Toksoz, M. N., Johnston, D. H., Timur, A. (1979), Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements, Geophysics. 44: 681–690

  • Tripathi, J.N., and Ugalde, A. (2004), Regional estimation of Q from seismic coda observation by the Gauribidanur seismic array (southern India), Phys. Earth Planet. Interiors. 145, 115–126.

  • Tuvè, T., Bianco, F., Ibáñez, J., Patanè, D., Del pezzo, Bottari, A. (2006), Attenuation study in the Straits of Messina area (southern Italy), Tectonophysics. 421, 173–185.

  • Valdiya, K.S. (1980), Geology of Kumaun Lesser Himalaya. Wadia Institute of Himalayan Geology, Dehradun. pp 291.

  • Wason, H.R., Sharma, M.L., Khan, P.K., Kapoor, K., Nandini, D., Kara, V. (2002), Analysis of aftershocks of the Chamoli Earthquake of March 29, 1999 using broadband seismic data, J. Himalayan Geol., 23, 7–18.

  • Yoshimoto, K., Sato, H., Ohtake, M. (1993), Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda normalization method, Geophys. J. Int. 114, 165–174.

  • Yoshimoto, K., Sato, H., Ito, Y., Ito, H., Ohminato, T., Ohtake, M. (1998), Frequency-dependent attenuation of high-frequency P and S waves in the upper crust in western Nagano, Japan, Pure Appl. Geophys.153, 489–502.

  • Young, C. Y., and Ward, R. W. (1980), Three dimensional Q 1 model of the Coso Hot Springs Known Geothermal Resource Area, J. Geophys. Res. - Sol. Ea. (1978–2012), 85(B5), 2459–2470.

  • Zeng, Y., Su, F., Aki, K. (1991). Scattering wave energy propagation in a random isotropic scattering medium. 1. Theory, J. Geophys. Res.-Sol. Ea. 96, 607–619.

Download references

Acknowledgments

The authors are grateful to the Director, Wadia Institute of Himalayan Geology, Dehradun for his encouragement in carrying out the research work. Sincere thanks are due to the Ministry of Earth Science, New Delhi for generous financial assistance for the project “VSAT linked seismic network for seismic hazard studies in Garhwal Himalaya,” whose data have been used in this paper. We gratefully acknowledge many fruitful discussions with Amit Kumar (IIT-Roorkee). We greatly thank Dr. Koushik Sen for his constructive inputs to our manuscript. Thanks are due to the handling editor and anonymous reviewers for significantly improving the manuscript through their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay S. Negi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negi, S.S., Paul, A., Joshi, A. et al. Body Wave Crustal Attenuation Characteristics in the Garhwal Himalaya, India. Pure Appl. Geophys. 172, 1451–1469 (2015). https://doi.org/10.1007/s00024-014-0966-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0966-9

Keywords

Navigation