Skip to main content
Log in

Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We examine the fine-scale variations in mineralogical composition, geochemical alteration, and texture of the fault-related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, California. This work provides insight into the physical and chemical properties, structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. Exhumed outcrops within the SAF system comprised of serpentinite-bearing protolith are examined for comparison at San Simeon, Goat Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple juxtaposed lenses of sheared, foliated siltstone and shale with block-in-matrix fabric, black cataclasite to ultracataclasite, and sheared serpentinite-bearing, finely foliated fault gouge. Meters-wide zones of sheared rock and fault gouge correlate to the sites of active borehole casing deformation and are characterized by scaly clay fabric with multiple discrete slip surfaces or anastomosing shear zones that surround conglobulated or rounded clasts of compacted clay and/or serpentinite. The fine gouge matrix is composed of Mg-rich clays and serpentine minerals (saponite ± palygorskite, and lizardite ± chrysotile). Whole-rock geochemistry data show increases in Fe-, Mg-, Ni-, and Cr-oxides and hydroxides, Fe-sulfides, and C-rich material, with a total organic content of >1 % locally in the fault-related rocks. The faults sampled in the field are composed of meters-thick zones of cohesive to non-cohesive, serpentinite-bearing foliated clay gouge and black fine-grained fault rock derived from sheared Franciscan Formation or serpentinized Coast Range Ophiolite. X-ray diffraction of outcrop samples shows that the foliated clay gouge is composed primarily of saponite and serpentinite, with localized increases in Ni- and Cr-oxides and C-rich material over several meters. Mesoscopic and microscopic textures and deformation mechanisms interpreted from the outcrop sites are remarkably similar to those observed in the SAFOD core. Micro-scale to meso-scale fabrics observed in the SAFOD core exhibit textural characteristics that are common in deformed serpentinites and are often attributed to aseismic deformation with episodic seismic slip. The mineralogy and whole-rock geochemistry results indicate that the fault zone experienced transient fluid–rock interactions with fluids of varying chemical composition, including evidence for highly reducing, hydrocarbon-bearing fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen, C.R. (1968), The tectonic environments of seismically active and inactive areas along the San Andreas Fault system, in Dickinson, W.R., and Grantz, A., eds., Proceedings of Conference on Geologic Problems of the San Andreas Fault: Standford, California, Stanford University Publication, 70-82.

  • Ando, M. (2001), Geological and geophysical studies of the Nojima Fault from drilling: An outline of the Nojima Fault Zone Probe. Island Arc, 10, 3-4, 206-214.

  • Bahlberg, H. and Dobrzinski, N. (2011), A review of the Chemical Index of Alteration (CIA) and its application to the study of Neoproterozoic glacial deposits and climate transitions, 81–92, in Arnaud, E., Halverson, G.P., and Shields, G.A. (Eds.), The geological record of Neoproterozoic glaciations: Geological Society Memoir No. 36.

  • Ball, D.F. (1964), Loss-on-Ignition as an estimate of organic matter and organic carbon in non-calcareous soils. Journal of Soil Science, 15, 1, 84-92.

  • Bailey, E.H., Irwin, W.P., and Jones, D.L. (1964), Franciscan and related rocks, and their significance in the geology of western California. California Division of Mines Bulletin 183, 177p.

  • Barth, N.C., Boulton, C., Carpenter, B.M., Batt, G.E., and Toy, V.G., (2013), Slip localization on the southern Alpine Fault, New Zealand. Tectonics, doi:10.1002/tect.20041.

  • Barton, N., Lien, R., and Lunde (1974), Engineering classification of rocks masses for the design of tunnel support. Rock Mechanics, 6, 189-236.

  • Blake, M. C., Jr., Graymer, R. W., and Stamski, R. E. (2002), Geologic map and map database of western Sonoma, northernmost Marine, and southernmost Mendocino counties, California, U. S. Geological Survey Map MF-2402.

  • Boullier, A.M., Yeh, E.C., Boutareeaud, S., Song, S.R., and Tsai, C.H. (2009), Microscale anatomy of the 1999 Chi Chi earthquake fault zone. Geochemistry, Geophysics, Geosystems, 10, 3, 1-25, doi:10.1029/2008GC002252.

  • Boutareaud, S., Calugaru, D.G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., and Shimamoto, T. (2008), Clay-clast aggregates: A new textural evidence for seismic fault sliding? Geophysical Research Letters, v. 35, L05302, doi:10.1029/2007GL032554.

  • Boutareaud, S., Boullier, A., Andreani, M., Calugaru, D.G., Beck, P., Song, S.R., and Shimamoto, T.(2010), Clay clast aggregates in gouges: New textural evidence for seismic faulting. Journal of Geophysical Research, 115, B02408, doi:10.1029/2008JB006254.

  • Bradbury, K. K., Barton, D. C., Solum, J. G., Draper, S. D., Evans J. P. (2007), Mineralogic and textural analyses of drill cuttings from the San Andreas Fault Observatory at Depth (SAFOD) boreholes: Initial interpretations of fault zone composition and constraints on geologic models. Geosphere, 3, 299-318.

  • Bradbury, K.K., Evans, J., Lowry, A.R., and Jeppson, T.(2009), Integration of geology and borehole geophysics to characterize rock properties at the San Andreas Fault Observatory at Depth (SAFOD) site, near Parkfield, CA, RMGSA Section 61 st Meeting, Geol. Soc. Amer. Abs. Prog., 41, 6, 13.

  • Bradbury, K.K., Evans, J.P., Chester, J.S., Chester, F.M., and Kirschner, D.K. (2011), Lithology and internal structure of the San Andreas fault at depth based on characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) borehole. Earth and Planetary Science Research Letters, 310, 1-2, 131-144.

  • Brearley, A.J., The action of Water, In Meteorites and the early solar system II (ed. Lauretta, D., McSween Jr, H.Y., and Leshin, L.), (Arizona University Press 2006), pp. 587-562.

  • Brodsky, E.E., Rowe, C.D., Meneghini, E., and Moore, J.C. (2009), A geological finger print of low-viscosity fault fluids mobilized during an earthquake. Journal of Geophysical Research, 114 B01303, doi:10.1029/2008JB005633.

  • Caine, J.S., Evans, J. P., and Forster, C.B. (1996), Fault zone architecture and permeability structure. Geology, 24, no. 11, p. 1025-1028, doi:10.1130/0091-7613.

  • Caine, J.S., Bruhn, R.L., and Forster, C.B. (2010), Internal structure, fault-related rocks, and inferences regarding deformation, fluid flow, and mineralization in the seisomgenic Stillwater normal fault, Dixie Valley, Nevada J. of Struct. Geol.,32, 11, 1576-1589, doi:10.1016/j.jsg.2010.03.004.

  • Carpenter, B.M., Marone, C., and Saffer, D.M. (2009), Frictional behavior of materials in the 3D SAFOD volume. Geophysical Research Letters, 36, L05302, doi:10.1029/2008GL039990, 2009.

  • Carpenter, B.M., Marone, C., and Saffer, D.M. (2011), Weakness of the San Andreas Fault revealed by samples from the active fault zone. Nature Geoscience, 4, p. 251-254, doi:10.1038/NGE01089.

  • Chester, F.M., and Logan, J.M. (1986), Implications for mechanical properties of brittle faults from observation of the Punchbowl fault zone, California. Pure and Applied Geophysics, 124, 79–106, doi:10.1007/BF00875720.

  • Chester, F. M., Evans, J. P., and Biegel, R. L. (1993), Internal structure and weakening mechanisms of the San Andreas Fault. Journal of Geophysical Research, 98,. 771-786.

  • Cloos, M. (1984), Flow melanges and the structural evolution of accretionary wedges. Geological Society of America Special Paper 198, 71-79.

  • Cobbold, P.R., and Rodrigues, N. andRodrigues, N. (2007), Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (“beef” and “cone-in-cone”). Geofluids, 7, p. 313-332, doi:10.1111/j.1468-8123.2007.00183.x.

  • Coleman, R.G. (1996), New Idria: A land management dilemma. Environmental and Engineering Geoscience, 2, 1, 9-22.

  • Colletini, C., Niemeijer, A., Viti, C., and Marone, C. (2009), Fault zone fabric and fault weakness. Nature, 462, 907-910, doi:10.1038/nature08585.

  • Collettini, C., Niemeijer, A.,Viti, C., Smith, S.A.F., and Marone, C. (2011), Fault zone fabric and fault weakness Earth and Planetary Science Letters, 311, 316-327, doi:10.1016/j.epsl.2011.09.020.

  • Cornet, F.H., Doan, M.L., Bernard, P., Moretti, I., and Borm, G. (2004), Drilling through the active Aigion Fault: The AIG10 well observatory. Geoscience 336, 395-406, doi:10.1016/j.crte.2004.02.002.

  • Cowan, D.S. (1978), Origin of blue-schist bearing chaotic rocks in the Franciscan Complex, San Simeon, California Geological Society of America Bulletin, 89, 1415-1423.

  • Cowan, D.S. (1985), Structural styles in Mesozoic and Cenozoic mélanges in the western Cordillera of North America. Geological Society of America Bulletin, 96, 451-462, doi:10.1130/0016-7606(1985)96<451:SSIMAC>2.0.CO;2.

  • Cowan, D.S. (1999), Do faults preserve a record of seismic slip: A field geologist’s opinion. J. of Struct. Geol., 21, 995-1001.

  • Davies, T.R.H, McSaveney, M.J., and Boulton, C.J. (2012), Elastic strain energy release from fragmenting grains: Effect on fault rupture. J. of Struct. Geol., 38, 265-267.

  • Dibblee, T.W. (1971), Geologic maps of seventeen 15-minute quadrangles along the San Andreas Fault in the vicinity of King City, Coalinga, Panoche Valley, and Paso Robles, California: U.S. Geological Survey Open-File Report 71–87, scale 1:62,500.

  • Dickinson, W.R. (1966), Table Mountain serpentinite extrusion in California Coast Ranges. Geological Society of America Bulletin, 77 451–472, doi:10.1130/0016-7606(1966)77[451:TMSEIC]2.0.CO;2.

  • Ellsworth, W.L., and Malin, P. E., Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone guided waves, In Geology of the earthquake source: a volume in honour of Rick Sibson (ed. Fagereng, A., Toy, V., and Rowland, J.) (Geol. Soc. of London 2011) pp. 39-53.

  • Evans, J.P., and F.M. Chester (1995), Fluid-rock interaction in faults of the San Andreas system: Inferences from San Gabriel fault-related rock geochemistry and microstructures. Journal of Geophysical Research, 100, (B7), 13007-13020.

  • Fagereng A., and Sibson, R.H. (2010), Melange rheology and seismic style. Geology, 38, 8, 751-754, doi:10.1130/G30868.1.

  • Fagereng A., and Toy V., Geology of the earthquake source: an introduction, In Geology of the earthquake source: a volume in honour of Rick Sibson (ed. Fagereng, A., Toy, V., and Rowland, J.) (Geol. Soc. of London 2011), pp. 1-16.

  • Faulkner, D.R., Lewis, A.C., and Rutter, E.H. (2003), On the internal structure and mechanics of large strike-slip fault zones: Field observations of the Carboneras Fault in southeastern Spain. Tectonophysics, 367, 235–251, doi:10.1016/S0040-1951(03)00134-3.

  • Festa, A., Pini, G., Dilek, Y., and Codegone, G. (2010), Melanges and mélange-forming processes: A historical overview and new concepts. International Geology Review, 52, 10-12, 1040-1105, doi:10.1080/00206810903557704.

  • Gratier, J.P., Richard, J., Renard, R., Mittempergher, S., Doan, M.L., Di Toro, G., Hadizadeh, J., and Boullier, A.M. (2011), Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault Observatory at Depth: Geology, 39, 12, 1131-1134, doi:10.1130/G32073.1.

  • Haines, S. H., van der Pluijm, B.A., Ikari, M.J., Saffer, D.M., and Marone, C. (2009), Clay fabric intensity in natural and artificial fault gouges: implications for brittle fault zone processes and sedimentary basin clay fabric evolution. Journal of Geophysical Research, 114, B05406, doi:10.1029/2008JB005866.

  • Heermance, R.V., Shipton, Z.K., and Evans, J.P. (2003), Fault structure control on fault slip and ground motion during the 1999 rupture of the Chelungpu Fault, Taiwan: Bulletin of the Seismological Society of America, 93, 1034-1050.

  • Henyey, T., Henfling, J., Linde, A., Steidl, J., and De Paolo, D.(2011), Report of the SAFOD Engineering Subcommittee of the Advisory Committee for Geosceinces, March 30, 2011;, last accessed Nov 23, 2011, http://www.earthscope.org/es_doc/reports/safodreport.pdf.

  • Hickman, S., Zoback, M.D., and Ellsworth, W. (2004), Introduction to special section: Preparing for the San Andreas Fault Observatory at Depth. Geophysical Research Letters, 31, L12S01, doi:10.1029/2004GL020688.

  • Hickman, S., Zoback, M., Ellsworth, W., Boness, N., Malin, P., Roecker, S., and Thurber, C. (2007), Structure and properties of the San Andreas Fault in central California: Recent results from the SAFOD experiment Scientific Drilling, Special Issue 1, 29-32, doi:10.2204/iodsd.s01.2007.

  • Hirono, T., Yeh, E.-C., Lin, W., Sone, H., Mishima, T., Soh, W., Hashimoto, Y., Matsubayashi, O., Aoike, K., Ito, H., Kinoshita, M., Murayama, M., Song, S.-R., Ma, J.-H., Wang, C.-Y., Tsai, Y.-B., Kondo, T., Nishimura, M., Moriya, S., Tanaka, T., Fujiki, T., Maeda, L., Muraki, H., Kuramoto, T., Sugiyama, K., Sugawara, T. (2007), Nondestructive continuous physical property measurements of core samples recovered from hole B, Taiwan Chelungpu-Fault Drilling Project, Journal of Geophysical Research, 112, B07404, doi:10.1029/2006JB004738.

  • Hirth, G., and Guillot, S. (2013), Rheology and tectonic significance of serpentinite, Elements, 9, 107-113.

  • Holdsworth, R.E., van Diggelen, E.W.E., de Bresser, J.H.P., Walker, R.J., and Bowen, L. (2011), Fault-related rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas Fault, California. J. of Struct. Geol., 33, 132-144, doi:10.1016/j.jsg.2010.11.010.

  • Hole, J.A., Ryberg, T., Fuis, G.S., Bleibinhaus, F., and Sharma, A.K. (2006), Structure of the San Andreas fault zone at SAFOD from a seismic refraction survey. Geophysical Research Letters, 33, doi:10.1029/2005GL025194.

  • Hsü, K.J. (1969), Principles of mélanges and their bearing on the Franciscan-Knoxville Paradox. Geological Society of America Bulletin, 79, 1063-1074, doi:10.1130/0016-7606(1968)79.

  • Irwin W., and Barnes, I. (1975), Effect of geologic structure and metamorphic fluids on seismic behavior of the San Andreas Fault system in central and northern California. Geology, 3, 12, 713-716, doi:10.1130/0091-7613.

  • Janssen, C., Wirth, R., Rybacki, R., Naumann, E., Kemnitz, H., Wenk, H.-R., and Dresen, G. (2010), Amorphous material in SAFOD core samples (San Andreas Fault): Evidence for crush origin pseudotachelytes? Geophysical Research Letters, 37, L01303, doi:10.1029/2009GL040993.

  • Janssen, C., Kanitpanyacharoen, W., Wenk, H. R., Wirth, R., Morales, L., Rybacki, R., Kienast, M., and Dresen, G. (2012), Clay fabrics in SAFOD core samples. J. of Struct. Geol., 43, 118-127.

  • Jeppson, T.N., Bradbury, K.K., and Evans, J.P.(2010), Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure. Journal of Geophysical Research, 115, B12423, doi:10.1029/2010JB007563.

  • Kennedy, B. M., Kharaka, Y. K., Evans, W. C., Ellwood, A., De Paolo, D. J. (1997), Mantle fluids in the San Andreas fault system. California, Science, 278, 1278-1281.

  • Kharaka, Y.K., Thordsen, J.J., Evans, W. C., Kennedy, B. M. (1999), Geochemistry and hydromechanical interactions of fluids associated with the San Andreas fault system, California. American Geophysical Union Monograph 113 129-148.

  • Knipe, R.J. (1993), The influence of fault zone processes and diagenesis on fluid flow, in Horbury, A.D., and Robinson, A.G., eds., Diagenesis and Basin Development: Americal Association of Petroleum Geologists, Studies in Geology, v. 36, p. 135-148.

  • Knipe, R.J., Jones, G., Fisher, Q.J. (1998), Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: An introduction: Geological Society of London Special Publication, v. 147, p. vii–xxi.

  • Kohli, A. H., and Zoback, M.D. (2013), Frictional properties of shale reservoir rocks: Journal of Geophysical Research. Solid Earth, 118, 5109-5125, doi:10.1002/jgrb.50346.

  • Lockner, D.A., Morrow, C., Moore, D., and Hickman, S. (2011), Low strength of deep San Andreas fault gouge from SAFOD core. Nature, 472, 82-85, doi:10.1038/nature09927.

  • Marone, C., and Richardson, E. (2010), Learning to read fault-slip behavior from fault-zone structure Geology, 38, 767–768, doi:10.1130/focus082010.1.

  • McPhee, D.K., R. C. Jachens, and Wentworth, C. M., 2004, Crustal structure across the San Andreas fault at the SAFOD site from potential field and geologic studies. Geophys Res. Let. 31, L12S03.

  • Medley, E.W., and Goodman, R.E. (1994), Estimating the block volumetric proportions of mélanges and similar block-in-matrix rocks (bimrocks), in Nelson, P.P., and Laubauch, S.E., eds., Rock mechanics models and measurement challenges from industry: Proceedings, North American Rock Mechanics Symposium, 1st, Austin, Texas, May 1994, p. 851-858.

  • Meneghini, F., and Moore, J.C. (2007), Deformation and hydrofracture in a subduction thrust at seismogenic depths: The Rodeo Cove thrust zone, Marin Headlands, California. Geological Society of America Bulletin, 119, 1-2, 174-183.

  • Micklethwaite, S., Sheldon, H.A., Baker, T. (2010), Active fault and shear processes and their implications for mineral deposit formation and discovery. J. of Struct. Geol., 32, 2, 151-165.

  • Mittempergher, S., Toro, G.D., Gratier, J.P., Hadizadeh, J., and Smith, S. (2011), Evidence of transient increases of fluid pressure in SAFOD Phase III Cores. Geophysical Research Letters, 38, L03301, doi:10.1029/2010GL046129.

  • Molnar, P., and Dayem, K.E. (2010), Major intracontinental strike-slip faults contrasts in lithospheric strength. Geosphere, 6, 444-467.

  • Moore, D., and Lockner,D. (2013), Chemcial controls on fault behavior: Weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system, Journal of Geophysical Research, 118, doi:10.1002/jgrb.50140.

  • Moore, D.E., and Rymer, M.J. (2012), Correlation of clayey gouge in a surface exposure of serpentinite in the San Andreas Fault with gouge from the San Andreas Fault Observatory at Depth (SAFOD). J. of Struct. Geol., 38, 51-60, doi:10.1016/j.jsg.2011.11.014.

  • Moore, D.E., and Rymer, M.J. (2010), Metasomatic origin of fault gouge comprising the two actively creeping strands at SAFOD: American Geophysical Union, Fall Meeting, San Francisco, California, Abstract T41A-2105.

  • Moore, D.E., and Rymer, M.J. (2009), Clay rich fault gouge identified in serpentinite from the San Andreas Fault zone at Nelson Creek, Monterey County, California: American Geophysical Union, Fall Meeting, Abstract T53C-1599.

  • Moore, D.E., and Rymer, M.J. (2007), Talc-bearing serpentinite and the creeping section of the San Andreas Fault. Nature, 448, 795-797, doi:10.1038/nature06065.

  • Moore, D., Lockner, D., Shengli, M., Summers, R., and Byerlee, J.D. (1997) Strengths of serpentinite gouges at elevated temperatures. Journal of Geophysical Research, 102, B7, 14,787-14,801.

  • Morrow, C.A., Lockner, D.A., Moore, D.E., and Hickman, S. (2010), SAFOD core reveals low strength of deep San Andreas Fault gouge and provide explanation for low heat flow in creeping section of fault: American Geophysical Union, Fall Meeting, San Francisco, California, Abstract T52B-05.

  • Nadeau, R. M., Michelini, A., Urhammer, A., Dolenc, D., and McEvilly, T. V. (2004), Detailed kinematics, structure and recurrence of microseismicity in the SAFOD target region. Geophysical Research Letters, 31, 15, L12S08, doi:10.1029/2003GL019409.

  • Niemeijer, A., Marone, C., and Elsworth, D. (2010), Fabric induced weakness of tectonic faults, Geophysical Research Letters, 37, L03304, doi:10.1029/2009GL041689.

  • Nesbitt, H.W., and Young, G. M. (1982), Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717, doi:10.1038/299715a0.

  • Ohtani, T., Fujimoto, K., Ito, H., Tanaka, H., Tomida, N., and Higuchi, T.(2000), Fault-related rocks and past to recent fluid characteristics from the borehole survey of the Nojima fault ruptured in the 1995 Kobe earthquake, southwest Japan: Journal of Geophysical Research.. 105, 16161–16171, doi:10.1029/2000JB900086.

  • Page, B., De Vito, L.A., and Coleman, R.G. (1999), Tectonic emplacement of serpentinite southeast of San Jose, California. International Geology Review, 41, 491-505.

  • Peters, K.E., and Cassa, M.R. (1994), Applied source rock geochemistry, in Magoon, L.B., and Dow, W.G., eds., The petroleum system–From source to trap: Tulsa, Oklahoma: American Association of Petroleum Geologists Memoir, v. 60, p. 93-117.

  • Oohashi, K., Hirose, T., and Shimamoto, T. (2011), Shear-induced graphitization of carbonaceous materials during seismic fault motion: experiments and possible implications for fault mechanics. J. of Struct. Geol., 33, 1122-1134, doi:10.1016/j/jsg/2011.01.007.

  • Oohashi, K., Hirose, T., Kobayashi, K., and Shimamoto, T. (2012), The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: origins and implications of fault creep. J. of Struct. Geol., 38, 39-50, doi:10.1016/j/jsg/2011.10.011.

  • Oohashi, K., Hirose, T., and Shimamoto, T. (2013), Graphite as a lubricating agent in fault zones: an insight from low- to high-velocity friction experiments on a mixed graphite-quartz gouge. Journal of Geophysical Research, 118, 2067-2084, doi:10.1002/jgrb.50175.

  • Raymond, L.A., ed. (1984), Melanges: Their nature, origin, and significance: Geological Society of America Special Paper 198, p. 170.

  • Reinen, L.A., Weeks, J.D., and Tullis, T.E. (1991), The frictional behavior of serpentinite: Implications for aseismic creep on shallow crustal faults. Geophysical Research Letters, 18, 10, 1921-1924.

  • Reinen, L.A. (2000), Seismic and aseismic slip indicators in serpentinite gouge. Geology, 28, 135-138, doi:10.1130/0091-7613(2000)28<135:SAASII>2.0.CO;2.

  • Rodrigues, N., Cobbold, P.R., Løseth, H., and Ruffet, G. (2009), Widespread bedding-parallel veins of fibrous calcite (“beef”) in a mature source rock (Vaca Muerta Fm, Neuquén Basin, Argentina): Evidence for overpressure and horizontal compression. Journal of the Geological Society of London, 166, 4, 695-709, doi:10.1144/0016-76492008-111.

  • Rowe, C.D., Meneghini, F., and Moore, J.C. (2009), Fluid-rich damage zone of an ancient out-of-sequence-thrust, Kodiak Islands, Alaska. Tectonics, 28, TC1006, doi:10.1029/2007TC002126.

  • Rudnicki, J.W., and Rice, J.R. (2006), Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation on a plane between dissimilar materials. Journal of Geophysical Research, 111, B10308, doi:10.1029/2006 JB004396.

  • Rybacki, E., Janssen, C., Wirth, R., Wenk, R., and Dresen, G. (2010), Low-temperature deformation in calcite veins of SAFOD core samples (San Andreas Fault)–microstructural analysis and implications of fault strength: American Geophysical Union, Fall Meeting, San Francisco, California, Abstract T52B-07.

  • Rymer, M.J., Catchings, R.D., and Goldman, M.R. (2003), Structure of the San Andreas Fault zone as revealed by surface geologic mapping and high-resolution seismic profiling near Parkfield, California. Geophysical Research Abstracts, 5, 13523.

  • Schleicher, A. M., van der Pluijm, B. A., Solum, J. G., Warr, L. N. (2006), Origin and significance of clay-coated fractures in mudrock fragments of the SAFOD borehole (Parkfield, California). Geophysical Research Letters 33.16, L16313.

  • Schleicher, A.M., van der Pluijm, B.A., and Warr, L.N. (2010), Nanocoatings of clay and creep of the San Andreas Fault at Parkfield, California. Geology, 38, 667-670, doi:10.1130/G31091.1.

  • Schleicher, A.M., van der Pluijm, B.A., and Warr, L.N. (2012), Chlorite-smectite clay minerals and fault behavior: new evidence from the San Andreas Fault Observatory at Depth (SAFOD) core. Lithosphere, 4, 209-220, doi:10.1130/L158.1.

  • Schulz, S.E., and Evans, J. (1998), Spatial variability in microscopic deformation and composition of the Punchbowl Fault, southern California: Implications for for mechanisms, fluid-rock interaction, and fault morphology. Tectonophysics, 295, 223-244.

  • Schulz, S.E., and Evans, J., (2000), Mesoscopic structure of the Punchbowl fault, southern California, and the geological and geophysical structure of active faults. J. of Struct. Geol., 22, 913–930, doi:10.1016/S0191-8141(00)00019-5.

  • Scott, R.J., Meffre, S., Woodhead, J., Gilbert, S., Berry, R., and Emsbo, P. (2009), Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Society of Economic Geologists, 104, 1143-1168, doi:10.2113/gsecongeo.104.8.1143.

  • Shervais, J., Kolesar, P., and Andreasen, K. (2004), Field and chemical study of serpentinization–Stonyford, California: Chemical fluxes and mass balance, in Ernst, W.G., ed., Serpentine and serpentinites: Mineralogy, petrology, geochemistry, ecology, geophysics, and tectonics (a tribute to Robert G. Coleman): Columbia, Maryland, Bellwether Publishing Ltd., International Book Series, 8, 452- 474.

  • Shervais, J., Choi, S., Sharp, W., Ross, J., Zoglman-Schuman, M., and Mukasa, S. (2011), Serpentinite matrix mélange: Implications of mixed provenance for mélange formation. Geological Society of America Special Paper 480, 1-30.

  • Shipton, Z., and Cowie, P. (2001), A conceptual model for the origin of fault damage zone structures in high-porosity sandstone. J. of Struct. Geol., 25, 333-344.

  • Sibson, R.H. (1977), Fault-related rocks and fault mechanisms. Journal of the Geological Society of London, 133, 191–213.

  • Sibson, R. H. (1989), Earthquake faulting as a structural process. J. of Struct. Geol., 11, 1–14.

  • Sibons, R.H. (2003), Thickness of the seismic slip zone. Bulletin Seismological Society of America, 93, 1169-1178.

  • Sims, J.D. (1990), Geologic map of the San Andreas Fault in the Parkfield 7.5-minute Quadrangle, Monterey and Fresno counties, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-2115.

  • Sims, J.D. (1988), Geologic map of the San Andreas fault zone in the Cholame Valley and Cholame Hills quadrangles, San Luis Obispo and Monterey counties, California: U.S. Geological Survey Miscellaneous Field Studies Map MF-1995.

  • Silver, E.A., and Beutner, E.C. (1980), Melanges—Penrose Conference report. Geology, 8, 32-34.

  • Singleton, J. S., Cloos, M. (2012), Kinematic analysis of melange fabrics in the Franciscan Complex near San Simeon, California; evidence for sinistral slip on the Nacimiento fault zone? Lithosphere, 5 179-188.

  • Solum, J.G., Hickman, S., Lockner, D., Tembe, S., Evans,J., Draper, S.D., Barton, D.C., Kirschner, D., Chester, J., Chester, F., van der Pluijm, B., Schleicher, A., Moore, D., Morrow, C., Bradbury, K., Calvin, W., and Wong, T. (2007), San Andreas Fault Zone mineralogy, geochemistry, and physical properties from SAFOD cuttings and core. Scientific Drilling Special Issue 1, 64-67.

  • Solum, J.G., Hickman, S.H., Lockner, D.A., Moore, D.E., van der Pluijm, B.A., Schleicher, A.M., and Evans, J. (2006), Mineralogical characterization of protolith and fault-related rocks from the SAFOD Main Hole. Geophysical Research Letters, 33, doi:10.1029/2006GL027285.

  • Tanaka, H., Wang, C.Y., Chen, W.M., Arito, S., Kotaro, U., Ito, H., and Masataka, A. (2002), Initial science report of shallow drilling penetrating into the Chelungpu fault zone, Taiwan. Terrestrial, Atmospheric, and Oceanic Sciences, 13, 227-251.

  • Thayer, M., and R. Arrowsmith, 2005, Fault zone structure of Middle Mountain, Central California, EOS Trans. AGU, 86(52), Fall Meet. Suppl., T21A0458.

  • Thurber, C., Roecker, S., Zhang, H., Baher, S., and Ellsworth, W. (2004), Fine-scale structure of the San Andreas Fault Zone and location of the SAFOD target earthquakes. Geophys. Res. Lett., 31, L12S02, doi:10.1029/2003GL019398.

  • Thurber, C., Zhang, F., Waldhauser, J., Hardebeck, J., Michael, A., and Eberhart-Phillips, D. (2006), Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California region. Bull. Seismol. Soc. of Am., 96, S38-S49.

  • Titus, S.J., DeMets, C., and Tikoff, B. (2006), Thirty-five-year creep rates for the creeping segment of the San Andreas Fault and the effects of the 2004 Parkfield earthquake: Constraints from alignment arrays, continuous global positioning system, and creepmeters. Bull. Seismol. Soc. of Am., 96, S250–S268, doi:10.1785/0120050811.

  • Tobin, H., and Kinoshita, M. (2006), NanTroSeize: The IODP Nankai Trough Seismogenic Zone Experiment. Scientific Drilling, 2, 23-27, doi:10.2204/iodp.sd.2.06.2006.

  • Townend, J., Sutherland, R., and Toy, V. (2009), Deep drilling fault project–Alpine Fault Zone. Scientific Drilling, 8, p. 75-82.

  • Ujiie, K., Yamaguchi, A., Kimura, G., and Toh, S. (2007), Fluidization of granular material in a subduction thrust at seismogenic depths. Earth and Planetary Science Letters, 259, 307-318, doi:10.1016/j.epsl.2007.04.049.

  • Vannucchi, P., Maltman, A., Bettelli, G., and Clennell, B. (2003), On the nature of scaly fabric and scaly clay. J. Struct. Geol., 25, 673-688, doi:10.1016/S0191-8141(02)00066-4.

  • Wakabayashi, J., and Dilek, Y. (2011), Introduction: Characteristics and tectonic settings of mélanges, and their significance for societal and engineering problems Geol. Soc. of Am. Special Paper 480, v–ix.

  • Wang, K. (2010), Finding faults in fault zones: Science, 9, 152-153.

  • Wibberley, C.A.J., Yielding, G., and Di Toro, G., Recent advances in the understanding of fault zone structure, In The internal structure of fault zones: Implications for mechanical and fluid-flow properties, (eds. Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E., and Coletinni, C) (Geological Society of London Special Publication 299 2008), pp. 5-33.

  • Wiesberg, T., Erzinger, J. (2011), Chemical and isotope compositions of drilling mud gas from the San Andreas Fault Observatory at Depth (SAFOD) borehole: Implications on gas migration and the permeability structure of the San Andreas Fault Chemical Geology, 284, 148-159.

  • Zoback, M.D., Hickman, S., and Ellsworth, W. (2005) Overview of SAFOD Phases 1 and 2: Drilling, sampling and measurements in the San Andreas Fault zone at seismogenic depth. EosTrans. AGU, 86 (52), Fall Meet. Suppl., Abstract T23E-01.

  • Zoback, M.D., Hickman, S., and Ellsworth, W.E., The role of fault zone drilling, In Treatise to Geophysics: (ed. Schubert, G.) (New York, Elseveir, 2007), pp. 649-674.

  • Zoback, M.D., Hickman, S.H., and Ellsworth W.E. (2010), Scientific drilling into the San Andreas Fault Zone, Eos Transactions. American Geophysical Union, 91, 197-204.

  • Zoback, M.D., Hickman, S.H., and Ellsworth W.E. (2011) Scientific drilling into the San Andreas Fault Zone–An overview of the first five years, Scientific Drilling, 11, 14-28.

  • Zolensky, M.E., Barrett, R., and Browning, L. (1993), Mineralogy and composition of matrix and chondrule rims in carbonaceous chondrites, Geoch. et Cosmo. Acta, 57, 3123–3148.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly K. Bradbury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bradbury, K.K., Davis, C.R., Shervais, J.W. et al. Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions. Pure Appl. Geophys. 172, 1053–1078 (2015). https://doi.org/10.1007/s00024-014-0896-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0896-6

Keywords

Navigation