Skip to main content
Log in

Sensitivity Kernel for the Weighted Norm of the Frequency-Dependent Phase Correlation

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Full-3D waveform tomography (F3DT) is often formulated as an optimization problem, in which an objective function defined in terms of the misfit between observed and model-predicted (i.e., synthetic) waveforms is minimized by varying the earth structure model from which the synthetic waveforms are calculated. Because of the large dimension of the model space and the computational cost for solving the 3D seismic wave equation, it is often mandatory to use Newton-type local optimization algorithms; in which case, spurious local optima in the objective function can prevent the global convergence of the descent algorithm if the initial estimate of the structure model is not close enough to the global optimum. By appropriate design of the objective function, it is possible to enlarge the attraction domain of the global optimum so that Newton-type local optimization algorithms can achieve global convergence. In this article, an objective function based on a weighted L 2 norm of the frequency-dependent phase correlation between observed and synthetic waveforms is proposed and studied, and its full-3D Fréchet kernel is constructed using the adjoint state method. The relation between the proposed objective function and the conventional frequency-dependent group-delay is analyzed and illustrated using numerical examples. The methodology has been successfully applied on a set of ambient-noise Green’s function observations collected in northern California to derive a full-3D crustal structure model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akcelik, V., Biros, G., & Ghattas, O., 2002. Parallel multiscale Gauss-Newton-Krylov methods for inverse wave propagation, Proceedings of the 2002 ACM/IEEE conference on Supercomputing, pp. 1–15.

  • Aki, K. & Richards, P. G., 2002. Quantitative Seismology, University Science Books, 2nd edn.

  • Baker, M. & Buyya, R., 1999. Cluster computing: the commodity supercomputer, Software-Practice and Experience, 29(6), 551–76.

  • Bamberger, A., Chavent, G., Hemon, C., & Lailly, P., 1982. Inversion of normal incidence seismograms, Geophysics, 47(5), 757–770.

  • Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y., 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophysical Journal International, 169(3), 1239–1260.

  • Biondi, B. & Symes, W. W., 2004. Angle-domain common-image gathers for migration velocity analysis by wavefield-continuation imaging, Geophysics, 69(5), 1283–1298.

  • Bozdağ, E., Trampert, J., & Tromp, J., 2011. Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophysical Journal International, 185, 845–870.

  • Brocher, T. M., 2005a. Empirical relations between elastic wavespeeds and density in the Earth’s crust, Bulletin Of The Seismological Society Of America, 95(6), 2081–2092.

  • Brocher, T. M., 2005b. A Regional View of Urban Sedimentary Basins in Northern California Based on Oil Industry Compressional-Wave Velocity and Density Logs, Bulletin of the Seismological Society of America, 95(6), 2093–2114.

  • Brocher, T. M., 2008. Compressional and shear-wave velocity versus depth relations for common rock types in northern California, Bulletin Of The Seismological Society Of America, 98(2), 950–968.

  • Bunks, C., Saleck, F. M., Zaleski, S., & Chavent, G., 1995. Multiscale seismic waveform inversion, Geophysics, 60(5), 1457–1473.

  • Chen, P., 2011. Full-wave seismic data assimilation: Theoretical background and recent advances, Pure and Applied Geophysics, 168(10), 1527–1552.

  • Chen, P., Jordan, T. H., & Lee, E.-J., 2010. Perturbation kernels for generalized seismological data functionals (GSDF), Geophysical Journal International, 183(2), 869–883.

  • Claerbout, J. F., 1971. Toward a unified theory of reflector mapping, Geophysics, 36(3), 467–481.

  • Claerbout, J. F. & Doherty, S. M., 1972. Downward continuation of moveout-corrected seismograms, Geophysics, 37(5), 741–768.

  • Dahlen, F., Hung, S., & Nolet, G., 2000. Fréchet kernels for finite-frequency traveltimes-I. Theory, Geophysical Journal International, 141, 157–174.

  • Dahlen, F. A. & Tromp, J., 1998. Theoretical Global Seismology, Princeton University Press.

  • Derode, A., Larose, E., Tanter, M., de Rosny, J., Tourin, A., Campillo, M., & Fink, M., 2003. Recovering the Green’s function from field-field correlations in an open scattering medium (L), The Journal of the Acoustical Society of America, 113(6), 2973.

  • Deutsch, C. V. & Journel, A., 1997. GSLIB: geostatistical software library and user’s guide, Applied Geostatistics, Oxford University Press.

  • Diersen, S., Lee, E., Spears, D., Chen, P., & Wang, L., 2011. Classification of seismic windows using artificial neural networks, in Procedia Computer Science proceedings, Tsukuba, Japan.

  • Fichtner, A., Kennett, B. L. N., Igel, H. & Bunge, H. P., 2008. Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. Geophysical Journal International, 175, 665–685.

  • Gauthier, O., Virieux, J., & Tarantola, A., 1986. Two-dimensional nonlinear inversion of seismic waveforms: numerical results, Geophysics, 51(7), 1387–1403.

  • Gee, L. S. & Jordan, T. H., 1992. Generalized seismological data functionals, Geophysical Journal International, 111(2), 363–390.

  • Graves, R. W., 1996. Simulating seismic wave propagation in 3d elastic media using staggered-grid finite-differences, Bulletin of the Seismological Society of America, 86(4), 1091–1106.

  • Holschneider, M., Diallo, M. S., Kulesh, M., Ohrnberger, M., Lück, E., & Scherbaum, F., 2005. Characterization of dispersive surface waves using continuous wavelet transforms, Geophysical Journal International, 163, 463–478.

  • Käser, M., Dumbser, M., de la Puente, J., & Igel, H., 2007. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - III. Viscoelastic attenuation, Geophysical Journal International, 168, 224–242.

  • Komatitsch, D. & Tromp, J., 2002. Spectral-element simulations of global seismic wave propagation – I Validation, Geophysical Journal International, 149(2), 390–412.

  • Lamb, H., 1904. On the propagation of tremors over the surface of an elastic solid, PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL OR PHYSICAL CHARACTER, 203, 1–42.

  • Lin, G., Thurber, C. H., Zhang, H., Hauksson, E., Shearer, P. M., Waldhauser, F., Brocher, T. M., & Hardebeck, J., 2010. A California statewide three-dimensional seismic velocity model from both absolute and differential times, Bulletin of the Seismological Society of America, 100(1), 225–240.

  • Liu, Q. and Tromp, J., 2006 Finite-frequency kernels based on adjoint methods, Bulletin of the Seismological Society of America, Vol. 96, No. 6, pp. 2383–2397.

  • Lobkis, O. I. & Weaver, R. L., 2001. On the emergence of the Green’s function in the correlations of a diffuse field, The Journal of the Acoustical Society of America, 110(6), 3011.

  • Luo, Y. & Shuster, G., 1991. Wave-equation traveltime inversion, Geophysics, 56(5), 645–653.

  • Maggi, A., Tape, C., Chen, M., Chao, D., & Tromp, J., 2009. An automated time-window selection algorithm for seismic tomography, Geophysical Journal International, 178, 257–281.

  • Milne, R., 1980. Applied functional analysis: an introductory treatment, Applicable mathematics series, Pitman.

  • Olsen, K. B., 1994. Simulation of three-dimensional wave propagation in the Salt Lake Basin, Ph.D. thesis, University of Utah, Salt Lake City, UT.

  • Press, W., 1992. Numerical recipes in FORTRAN: the art of scientific computing, FORTRAN Numerical Recipes, Cambridge University Press.

  • Reddy, B. & Chatterji, B., 1996. An fft-based technique for translation, rotation, and scale-invariant image registration, Image Processing, IEEE Transactions on, 5(8), 1266–1271.

  • Rickett, J. & Claerbout, J., 1999. Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring, The Leading Edge, 18(8), 957–960.

  • Sirgue, L. & Pratt, R. G., 2004. Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies, Geophysics, 69(1), 231–248.

  • Snieder, R., 2004. Extracting the Green’s function from the correlation of coda waves: A derivation based on stationary phase, Physical Review E, 69(4).

  • Snieder, R., Wapenaar, K., & Wegler, U., 2007. Unified Green’s function retrieval by cross-correlation; connection with energy principles, Physical Review E, 75(3).

  • Symes, W. W., 2008. Migration velocity analysis and waveform inversion, Geophysical Prospecting, 56(6), 765–790.

  • Symes, W. W. & Carazzone, J. J., 1991. Velocity inversion by differential semblance optimization, Geophysics, 56(5), 654–663.

  • Tarantola, A., 1984. Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49(8), 1259–1266.

  • Tarantola, A., 1988. Theoretical background for the inversion of seismic waveforms including elasticity and attenuation, Pure and Applied Geophysics, 128(1–2), 365–399.

  • Tromp, J., Tape, C., & Liu, Q., 2005. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, Geophysical Journal International, 160(1), 195–216.

  • Tromp, J., Luo, Y., Hanasoge, S., and Peter, D., 2010. Noise cross-correlation sensitivity kernels. Geophysical Journal International, 183, 791–819.

  • van Leeuwen, T., 2011. Multiscale aspects of waveform mismatch measurements, in SIAM Conference on Mathematical and Computational Issues in the Geosciences.

  • van Leeuwen, T. & Mulder, W. A., 2008. Velocity analysis based on data correlation, Geophysical Prospecting, 56(6), 791–803.

  • van Leeuwen, T. & Mulder, W. A., 2010. A correlation-based misfit criterion for wave-equation traveltime tomography, Geophysical Journal International, 182(3), 1383–1394.

  • Wapenaar, K., 2004. Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation, Physical Review Letters, 93(25).

  • Weaver, R. L. & Lobkis, O. I., 2004. Diffuse fields in open systems and the emergence of the Green’s function (L), The Journal of the Acoustical Society of America, 116(5), 2731.

  • Wessel, P. and Smith, W. H. F. (1991) Free software helps map and display data. EOS Trans. AGU, 72, 441.

  • Woodward, R. & Masters, G., 1991. Global upper mantle structure from long-period differential travel times, Journal of Geophysical Research, 96(B4), 6351–6377.

  • Zhao, L., Jordan, T. H., & Chapman, C., 2000. Three-dimensional Fréchet differential kernels for seismic delay times, Geophysical Journal International, 141(3), 558–576.

Download references

Acknowledgments

This work is partly supported by the United States Geological Survey (USGS) National Earthquake Hazard Reduction Program (NEHRP) under the award number G10AP00032. The first author was partly supported by the China Scholarship Council (CSC). The second author was supported by the School of Energy Resources at University of Wyoming. The seismic waveform data used in this study was provided by the USArray of the EarthScope project, Northern California Earthquake Center and the IRIS Data Management Center. Some figures used in this article were generated using the Generic Mapping Tools (GMT) developed by Wessel and Smith (1991). Comments from two anonymous reviewers improved the manuscript and we greatly appreciate the time and effort they spent reviewing our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Chen.

Appendix A

Appendix A

The perturbation of the phase correlation, as defined in Eq. (1), can be expressed in terms of the perturbation of the synthetic waveform, as in Eq. (7). In this appendix, we provide a more detailed derivation of Eq. (7).

From Eq. (1), the perturbation of the phase correlation can be expressed as

$$ \begin{aligned} \delta \hat{C}(\omega ) & = \delta \left( {\frac{{\hat{\bar{u}}^{ * } (\omega )\hat{u}(\omega )}}{{|\hat{\bar{u}}^{*} (\omega )\hat{u}(\omega )|}}} \right) \\ & = \frac{{\hat{\bar{u}}^{ * } (\omega )}}{{|\hat{\bar{u}}^{*} (\omega )\hat{u}(\omega )|}}\delta \hat{u}(\omega ) + \hat{\bar{u}}^{ * } (\omega )\hat{u}(\omega )\delta \left\{ {\left[ {\hat{\bar{u}}^{*} (\omega )\hat{\bar{u}}(\omega )\hat{u}^{*} (\omega )\hat{u}(\omega )} \right]^{ - 1/2} } \right\}. \\ \end{aligned} $$
(36)

The second term on the right-hand-side can be expressed as,

$$ \begin{aligned} & \delta \left\{ {\left[ {\hat{\bar{u}}^{*} (\omega )\hat{\bar{u}}(\omega )\hat{u}^{*} (\omega )\hat{u}(\omega )} \right]^{ - 1/2} } \right\} \\ & \quad = - \frac{1}{2}\left[ {\hat{\bar{u}}^{*} (\omega )\hat{\bar{u}}(\omega )\hat{u}^{*} (\omega )\hat{u}(\omega )} \right]^{ - 3/2} \left[ {\hat{\bar{u}}^{*} (\omega )\hat{\bar{u}}(\omega )} \right]\delta \left[ {\hat{u}^{*} (\omega )\hat{u}(\omega )} \right] \\ & \quad = - \frac{1}{2}\left[ {\hat{\bar{u}}^{*} (\omega )\hat{\bar{u}}(\omega )} \right]^{ - 1/2} \left[ {\hat{u}^{*} (\omega )\hat{u}(\omega )} \right]^{ - 3/2} \left[ {\hat{u}^{*} (\omega )\delta \hat{u}(\omega ) + \hat{u}(\omega )\delta \hat{u}^{*} (\omega )} \right] \\ \end{aligned} . $$
(37)

Bring (37) into (36) and collect the terms containing \( \delta \hat{u}(\omega ) \) and the terms containing\( \delta \hat{u}^{*} (\omega ) \), respectively, we obtain Eq. (7).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Chen, P. & Chen, Y. Sensitivity Kernel for the Weighted Norm of the Frequency-Dependent Phase Correlation. Pure Appl. Geophys. 170, 353–371 (2013). https://doi.org/10.1007/s00024-012-0507-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-012-0507-3

Keywords

Navigation