Skip to main content
Log in

On “Hard Stars” in General Relativity

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study spherically symmetric solutions to the Einstein–Euler equations which model an idealised relativistic neutron star surrounded by vacuum. These are barotropic fluids with a free boundary, governed by an equation of state which sets the speed of sound equal to the speed of light. We demonstrate the existence of a 1-parameter family of static solutions, or “hard stars” and describe their stability properties: First, we show that small stars are a local minimum of the mass energy functional under variations which preserve the total number of particles. In particular, we prove that the second variation of the mass energy functional controls the “mass aspect function”. Second, we derive the linearisation of the Euler–Einstein system around small stars in “comoving coordinates” and prove a uniform boundedness statement for an energy, which is exactly at the level of the variational argument. Finally, we exhibit the existence of time-periodic solutions to the linearised system, which shows that energy boundedness is optimal for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Burtscher, A.Y.: On the asymptotic behavior of static perfect fluids. Ann. Henri Poincaré 20, 813 (2019). https://doi.org/10.1007/s00023-018-00758-z

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Bizoń, P., Rostworowski, A.: Weakly turbulent instability of anti-de sitter spacetime. Phys. Rev. Lett. 107(3), 031102 (2011)

    Article  ADS  Google Scholar 

  3. Blanchet, L.: Gravitational radiation from post-newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17(1), 1 (2014)

    Article  MATH  ADS  Google Scholar 

  4. Buchdahl, H.A., Land, W.J.: The relativistic incompressible sphere. J. Aust. Math. Soc. 8(1), 6–16 (1968)

    Article  Google Scholar 

  5. Chodosh, O., Shlapentokh-Rothman, Y.: Time-periodic einstein–klein–gordon bifurcations of kerr (2015). arXiv:1510.08025 [gr-qc]

  6. Christodoulou, D.: Violation of cosmic censorship in the gravitational collapse of a dust cloud. Commun. Math. Phys. 93(2), 171–195 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  7. Christodoulou, D.: The problem of a self-gravitating scalar field. Commun. Math. Phys. 105(3), 337–361 (1986)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Christodoulou, D.: Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Commun. Pure Appl. Math. 46(8), 1131–1220 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christodoulou, D.: Self-gravitating relativistic fluids: a two-phase model. Arch. Ration. Mech. Anal. 130(4), 343–400 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Christodoulou, D.: Self-gravitating relativistic fluids: the continuation and termination of a free phase boundary. Arch. Ration. Mech. Anal. 133(4), 333–398 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christodoulou, D.: Self-gravitating relativistic fluids: the formation of a free phase boundary in the phase transition from soft to hard. Arch. Ration. Mech. Anal. 134(2), 97–154 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christodoulou, D.: The Formation of Shocks in 3-Dimensional Fluids. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich (2007)

    Book  MATH  Google Scholar 

  13. Christodoulou, D., Lisibach, A.: Self-gravitating relativistic fluids: the formation of a free phase boundary in the phase transition from hard to soft. Arch. Ration. Mech. Anal. 222(2), 927–1010 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Costa, J., Natario, J.: Elastic shocks in relativistic rigid rods and balls (2018). arXiv:1811.12424

  15. Courant, R., Hilbert, H.: Methoden der Mathematischen Physik, vol. I. Springer, Berlin (1931)

    Book  MATH  Google Scholar 

  16. Friedman, B., Pandharipande, V.R.: Hot and cold, nuclear and neutron matter. Nucl. Phys. A 361, 502–520 (1981)

    Article  ADS  Google Scholar 

  17. Ginsberg, D.: A priori estimates for a relativistic liquid with free surface boundary (2018). arXiv:1811.06915 [math.AP]

  18. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94(2), 308–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hadzic, M., Lin, Z., Rein, G.: arXiv:1810.00809 [gr-qc] (2018)

  20. Harrison, B.K., Thorne, K.S., Wakano, M., Wheeler, J.A.: Gravitation Theory and Gravitational Collapse. University of Chicago Press, Chicago (1965)

    Google Scholar 

  21. Heinzle, J.M., Röhr, N., Uggla, C.: Dynamical systems approach to relativistic spherically symmetric static perfect fluid models. Class. Quantum Gravity 20(21), 4567–4586 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Jang, J.: Time-periodic approximations of the Euler–Poisson system near lane-emden stars. Anal. PDE 9(5), 1043–1078 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kichenassamy, S.: Soliton stars in the breather limit. Class. Quantum Gravity 25(24), 245004, 12 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kind, S., Ehlers, J.: Initial-boundary value problem for the spherically symmetric Einstein equations for a perfect fluid. Class. Quantum Gravity 10(10), 2123–2136 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Lemou, M., Méhats, F., Raphaël, P.: A new variational approach to the stability of gravitational systems. Commun. Math. Phys. 302(1), 161–224 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  26. Lemou, M., Méhats, F., Raphaël, P.: Orbital stability of spherical galactic models. Invent. Math. 187(1), 145–194 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Lindblad, H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. (2) 162(1), 109–194 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. LSC and Virgo: First search for gravitational waves from known pulsars with advanced ligo. Astrophys. J. 839(1), 12 (2017)

    Article  ADS  Google Scholar 

  29. Makino, T.: On spherically symmetric stellar models in general relativity. J. Math. Kyoto Univ. 38(1), 55–69 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moschidis, G.: A proof of the instability of AdS for the Einstein–null dust system with an inner mirror (2017). arXiv:1704.08681

  31. Moschidis, G.: A proof of the instability of ads for the Einstein–massless Vlasov system (2018). arXiv:1812.04268 [math.AP]

  32. Oliynyk, T.A.: A priori estimates for relativistic liquid bodies. Bull. Sci. Math. 141(3), 105–222 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Oppenheimer, J.R., Volkoff, G.: On massive neutron cores. Phys. Rev. 55, 374 (1939)

    Article  MATH  ADS  Google Scholar 

  34. Ramming, T., Rein, G.: Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the nonrelativistic and relativistic case—a simple proof for finite extension. SIAM J. Math. Anal. 45(2), 900–914 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rendall, A.D., Schmidt, B.G.: Existence and properties of spherically symmetric static fluid bodies with a given equation of state. Class. Quantum Gravity 8(5), 985–1000 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Zeldovich, Y.B.: The equation of state at ultrahigh densities and its relativistic limitations. J. Exp. Theor. Phys. 41, 1609–1615 (1961)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Robert Wald for a useful discussion at the trimester programme on “Mathematical General Relativity” at the IHP, in Paris (2015). G.F. was supported by the EPSRC Grant EP/K00865X/1 on “Singularities of Geometric Partial Differential Equations” and partially by the ERC Grant 714408 GEOWAKI under the European Union’s Horizon 2020 research and innovation programme. V.S. gratefully acknowledges the support of ERC consolidator Grant 725589 EPGR, and ERC advanced Grant 291214 BLOWDISOL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schlue.

Additional information

Communicated by Krzysztof Gawedzki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fournodavlos, G., Schlue, V. On “Hard Stars” in General Relativity. Ann. Henri Poincaré 20, 2135–2172 (2019). https://doi.org/10.1007/s00023-019-00793-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00793-4

Navigation