Skip to main content
Log in

On the Sixth-Order Joseph–Lundgren Exponent

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we study the solutions of the triharmonic Lane–Emden equation

$$\begin{aligned} -\Delta ^3 u=|u|^{p-1}u,\quad \text{ in }\;\; \mathbb {R}^n, \quad \text{ with }\;\;n\ge 2\quad \text{ and }\quad p>1. \end{aligned}$$

As in Dávila et al. (Adv. Math. 258:240–285, 2014) and Farina (J. Math. Pures Appl. 87:537–561, 2007), we prove various Liouville-type theorems for smooth solutions under the assumption that they are stable or stable outside a compact set of \(\mathbb {R}^n\). Again, following Dávila et al. (Adv. Math. 258:240–285, 2014), Hajlaoui et al. (On stable solutions of biharmonic prob- lem with polynomial growth. arXiv:1211.2223v2, 2012) and Wei and Ye (Math. Ann. 356:1599–1612, 2013), we first establish the standard integral estimates via stability property to derive the nonexistence results in the subcritical case by means of the Pohozaev identity. The supercritical case needs more involved analysis, motivated by the monotonicity formula established in Blatt (Monotonicity formulas for extrinsic triharmonic maps and the tri- harmonic Lane–Emden equation, 2014) (see also Luo et al., On the Triharmonic Lane–Emden Equation. arXiv:1607.04719, 2016), we then reduce the nonexistence of nontrivial entire solutions to that of nontrivial homogeneous solutions similarly to Dávila et al. (Adv. Math. 258:240–285, 2014). Through this approach, we give a complete classification of stable solutions and those which are stable outside a compact set of \(\mathbb {R}^n\) possibly unbounded and sign-changing. Inspired by Karageorgis (Nonlinearity 22:1653–1661, 2009), our analysis reveals a new critical exponent called the sixth-order Joseph–Lundgren exponent noted \(p_c(6,n)\). Lastly, we give the explicit expression of \(p_c(6,n)\). Our approach is less complicated and more transparent compared to Gazzola and Grunau (Math. Ann. 334:905–936, 2006) and Gazzola and Grunau (Polyharmonic boundary value problems. A monograph on positivity preserving and nonlinear higher order elliptic equations in bounded domains. Springer, New York, 2009) in terms of finding the explicit value of the fourth-Joseph–Lundgren exponent, \(p_c(4,n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, A., Santra, S.: Generalized Hardy–Rellich inequalities in critical dimension and its applications. Commun. Contemp. Math. 11(3), 367–394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angelsberg, G.: A monotonicity formula for stationary biharmonic maps. Math. Z. 252(2), 287–293 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arioli, G., Gazzola, F.: Grunau, HCh.: Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity. J. Differ. Equ. 230, 743–770 (2006)

    Article  ADS  MATH  Google Scholar 

  4. Bahri, A., Lions, P.L.: Solutions of superlinear elliptic equations and their Morse indices. Commun. Pure Appl. Math. 45, 1205–1215 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blatt, S.: Monotonicity formulas for extrinsic triharmonic maps and the triharmonic Lane–Emden equation (2014) (submitted)

  6. Dunham, W.: Cardano and the solution of the cubic equations. In: Journey through Genius: The Great Theorems of Mathematics (Chap. 6), pp. 133–154. Wiley, New York (1990). ISBN: 978-0-471-50030-8

  7. Cowan, C., Ghoussoub, N.: Regularity of semi-stable solutions to fourth order nonlinear eigevalue problems on general domains. Calc. Var. doi:10.1007/s00526-012-0582-4

  8. Cowan, C., Esposito, P., Ghoussoub, N.: Regularity of extremal solutions in fourth order nonlinear eigevalue problems on general domains. DCDS-A 28, 1033–1050 (2010)

    Article  MATH  Google Scholar 

  9. Chang, A., Wang, L., Yang, P.C., Yung, S.: A regularity theory of biharmonic maps. Commun. Pure Appl. Math. 52(9), 1113–1137 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Li, C.: Classification of solutions of some nonlinear nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Damascelli, L., Gladiali, F.: Some nonexistence results for positive solutions of elliptic equations in unbounded domains. Rev. Mat. Iberoam. 20, 67–86 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Dancer, E.N.: Superlinear problems on domains with holes of asymptotic shape and exterior problems. Math. Z. 229(3), 475–491 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dávila, J., Dupaigne, L., Farina, A.: Partial regularity of finite Morse index solutions to the Lane-Emden equation. J. Funct. Anal. 261, 218–232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dávila, J., Dupaigne, L., Wang, K., Wei, J.: A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem. Adv. Math. 258, 240–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dupaigne, L., Ghergu, M., Goubet, O., Warnault, G.: Entire large solutions for semilinear elliptic equations. J. Differ. Equations 253, 2224–2251 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dupaigne, L., Harrabi, A.: The Lane–Emden Equation in Strips. Proc. R. Soc. Edin. Sec A (2016) (to appear in)

  17. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116(2), 101–113 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Farina, A.: On the classification of solutions of the Lane-Emden equation on unbounded domains of \(\mathbb{R}^n\). J. Math. Pures Appl. 87, 537–561 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Farina, A., Ferrero, A.: Existence and stability propertiesof entire solutions to the polyharmonic equation \((-\Delta )^{m} u= e^u\) for any \(m\ge 1\). Ann. I. H. Poincaré (2014). doi:10.1016/j.anihpc.2014.11.005

  20. Ferrero, A.: Grunau, HCh.: The Dirichlet problem for supercritical biharmonic equations with power-type nonlinearity. J. Differ. Equ. 234, 582–606 (2007)

    Article  ADS  MATH  Google Scholar 

  21. Ferrero, A., Grunau, HCh., Karageorgis, P.: Supercritical biharmonic equations with power-like nonlinearity: Ann. Mat. Pura Appl. 188, 171–185 (2009)

  22. Gazzola, F., Grunau, HCh.: Radial entire solutions for supercritical biharmonic equations. Math. Ann. 334, 905–936 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gazzola, F., Grunau, H. Ch., Sweers, G.: Polyharmonic boundary value problems. A monograph on positivity preserving and nonlinear higher order elliptic equations in bounded domains. Springer, New York (2009)

  24. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Giga, Y., Kohn, R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38(3), 297–319 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, Z., Wei, J.: Qualitative properties of entire radial solutions for a biharmonic equation with supcritical nonlinearity. Proc. Am. Math. Soc. 138, 3957–3964 (2010)

    Article  MATH  Google Scholar 

  28. Hajlaoui, H., Harrabi, A., Ye, D.: On stable solutions of biharmonic problem with polynomial growth (2012). arXiv:1211.2223v2

  29. Joseph, D.D., Lundgren, T.S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Ration. Mech. Anal. 49, 241–269 (1972/1973)

  30. Karageorgis, P.: Stability and intersection properties of solutions to the nonlinear biharmonic equation. Nonlinearity 22, 1653–1661 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Lin, C.S.: A classification of solutions to a conformally invariant equation in \(\mathbb{R}^4\). Commun. Math. Helv. 73, 206–231 (1998)

    Article  MathSciNet  Google Scholar 

  32. Luo, S., Wei, J., Zou, W.: On the Triharmonic Lane–Emden Equation (2016). arXiv:1607.04719

  33. Pacard, F.: Partial regularity for weak solutions of a nonlinear elliptic equation. Manuscr. Math. 79(2), 161–172 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Polácik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems. Duke Math. J. 139(3), 555–579 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ramos, N., Rodrigues, P.: On a fourth order superlinear elliptic problem. Electr. J. Differ. Equations Conf. 06, 243–255 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Rellich, F.: Perturbation theory of eigenvalue problems. Gordon and Breach, New York (1969) (MR 39 \(\sharp \) 2014 Zbl 0181.42002)

  37. Souplet, P.: The proof of the Lane-Emden conjecture in four space dimensions. Adv. Math. 221, 1409–1427 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, X.: On the Cauchy problem for reaction-diffusion equations. Trans. Am. Math. Soc. 337(2), 549–590 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wei, J., Xu, X.: Classification of solutions of high order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wei, J., Ye, D.: Liouville Theorems for stable solutions of biharmonic problem. Math. Ann. 356(4), 1599–1612 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wei, J., Xu, X., and Yang, W.: On the classification of stable solutions to biharmonic problems in large dimensions. Pacific J. Math. 263(2), 495–512 (2013) (MR 3068555 Zbl 06196725)

Download references

Acknowledgments

The authors would like to thank Professor Dong Ye to send them the preprint of Professor Simon Blatt which is a basic reference in this paper. They are also grateful to Professors Ali Maalaoui and Louis Dupaigne for improving the English of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellaziz Harrabi.

Additional information

Communicated by Nader Masmoudi.

In Memory of Our Great Professor Abbas Bahri, with Gratitude.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrabi, A., Rahal, B. On the Sixth-Order Joseph–Lundgren Exponent. Ann. Henri Poincaré 18, 1055–1094 (2017). https://doi.org/10.1007/s00023-016-0522-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0522-5

Navigation