Skip to main content
Log in

Gielis’ superformula and regular polygons

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Circles, ellipses, squares, rectangles, rhombuses and cross shapes are all special cases of Lamé curves (also known as superellipses). As a further generalization of Lamé curves, the Belgian botanist Johan Gielis introduced the notion of the so-called superformula with a view to the application to modeling and understanding the shapes of plants and animals. Despite the fact that Gielis’ superformula is expressed by a single simple equation, it can describe a wide range of various shapes, including, for example, triangle-like shapes, star-like shapes, flower-like shapes and so on. So far, it seems that most of the studies about Gielis curves (the curves generated by Gielis’ superformula) are application-oriented. In this paper, we examine precisely and analytically the mathematical structure of Gielis curves from a theoretical point of view. The original equation of the superformula has six parameters, which is too many to deal with at once. Therefore, we focus on a restricted case where the number of the parameters is reduced to three. In particular, we analyze the curvature at the “corners” and the midpoint of the “sides” of Gielis curves. We also derive the limit curves of Gielis curves and compare them with regular polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allard J.: Note on squares and cubes. Math. Mag. 37, 210–214 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beer G.: On uniform convergence of continuous functions and topological convergence of sets. Can. Math. Bull. 26, 418–424 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bellos A.: Here’s Looking at Euclid: A Surprising Excursion Through the Astonishing World of Math. Free Press, New York (2010)

    Google Scholar 

  4. Caratelli D., Natalini P., Ricci P.E.: Fourier solution of the wave equation for a star-like-shaped vibrating membrane. Comput. Math. Appl. 59, 176–184 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caratelli D., Ricci P.E., Gielis J.: The Robin problem for the Laplace equation in a three-dimensional starlike domain. Appl. Math. Comput. 218, 713–719 (2011)

    MATH  MathSciNet  Google Scholar 

  6. Fougerolle, Y.D., Gribok, A., Foufou, S., Truchetet, F., Abidi, M.A.: Supershape recovery from 3D data sets. In: Proceedings of the International Conference on Image Processing, pp. 2193–2196. Atlanta, USA (2006)

  7. Gardner M.: The “superellipse”: a curve that lies between the ellipse and the rectangle. Sci. Am. 213(3), 222–234 (1965)

    Article  Google Scholar 

  8. Gardner M.: Mathematical Carnival. Vintage, New York (1977)

    Google Scholar 

  9. Gielis J.: Wiskundige supervormen bij bamboes. Newsl. Belg. Bamboo Soc. 13, 20–26 (1996)

    Google Scholar 

  10. Gielis J.: A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot. 90, 333–338 (2003)

    Article  Google Scholar 

  11. Gielis, J., Beirinckx, B., Bastiaens, E.: Superquadrics with rational and irrational symmetry. In: Elber, G., Shapiro V., (eds.) Proceedings of the 8th ACM Symposium on Solid Modeling and Applications, pp. 262–265. Seattle, USA (2003)

  12. Gielis, J., Gerats, T.: A botanical perspective on modeling plants and plant shapes in computer graphics. In: Chu, H.-W. (eds.) Proceedings of the International Conference on Computing, Communications and Control Technologies, pp. 265–272. Austin, USA (2004)

  13. Gielis J., Haesen S., Verstraelen L.: Universal natural shapes: from the supereggs of Piet Hein to the cosmic egg of Georges Lemaître. Kragujev. J. Math. 28, 57–68 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Gielis, J., Caratelli, D., Haesen, S., Ricci, P.E.: Rational mechanics and science rationnelle unique. In: Paipetis, S.A., Ceccarelli, M. (eds.) The Genius of Archimedes—23 Centuries of Influence on Mathematics, Science and Engineering, pp. 29–43. Springer, Dordrecht (2010)

  15. Gridgeman N.T.: Lamé ovals. Math. Gaz. 54, 31–37 (1970)

    Article  MATH  Google Scholar 

  16. Huclova S., Erni D., Fröhlich J.: Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition. J. Phys. D Appl. Phys. 45, 025301 (2012)

    Article  Google Scholar 

  17. Jaklič A., Leonardis A., Solina F.: Segmentation and Recovery of Superquadrics. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  18. Koiso M., Palmer B.: Equilibria for anisotropic surface energies and the Gielis formula. Forma 23, 1–8 (2008)

    MathSciNet  Google Scholar 

  19. Lamé G.: Examen des Différentes Méthodes Employées pour Résoudre les Problèmes de Géométrie. Mme Ve Courcier, Paris (1818)

    MATH  Google Scholar 

  20. Lenjou, K.: Krommen en oppervlakken van Lame en Gielis: van de formule van Pythagoras tot de superformule. Msc. thesis, University of Louvain, Department of Mathematics (2005)

  21. Liang, C., Baciu, G., Zhang, J., Chan, E.C.L., Li, G.: Footprint-profile sweep surface: a flexible method for realtime generation and rendering of massive urban buildings. In: Proceedings of the 17th ACM Symposium on Virtual Reality Software and Technology, pp. 151–158. Hong Kong (2010)

  22. Morales, A.K., Bobadilla, E.A.: Clustering with an N-dimensional extension of Gielis superformula. In: Kazovsky, L. (eds.) Proceedings of the 7th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, pp. 343–350. Cambridge, UK (2008)

  23. Natalini P., Patrizi R., Ricci P.E.: The Dirichlet problem for the Laplace equation in a starlike domain of a Riemann surface. Numer. Algorithm 49, 299–313 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang H.: Investigation of trajectories of inviscid fluid particles in two-dimensional rotating boxes. Theor. Comput. Fluid Dyn. 22, 21–35 (2008)

    Article  Google Scholar 

  25. Wang, S., Pan, J.Z.: Integrating and querying parallel leaf shape descriptions. In: Cruz, I.F. (eds.) Proceedings of the 5th International Semantic Web Conference, pp. 668–681. Athens, USA (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Matsuura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuura, M. Gielis’ superformula and regular polygons. J. Geom. 106, 383–403 (2015). https://doi.org/10.1007/s00022-015-0269-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-015-0269-z

Mathematics Subject Classification

Keywords

Navigation