Skip to main content
Log in

Geometry of the weighted Fermat–Torricelli problem

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Given a triangle A 1 A 2 A 3 and weights m 1, m 2, m 3, a geometric proof is given of (a) the existence of a point F whose weighted distance sum

$$m_{1}|F-A_{1}|+m_{2}|F-A_{2}|+m_{3}|F-A_{3}|$$

has the smallest possible value, (b) the value of this minimum, and (c) the construction of the point. A characterization of the weights that guarantees the point is inside the triangle is given. This is then used to supply solutions to three extremal problems, as well as to generate sharp inequalities connecting the elements of triangle A 1 A 2 A 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Coxeter, H.S.M., Greitzer, S.L.: Geometry Revisited, The Mathematical Association of America, Washington, D.C. (1967)

  2. Hofmann E.: Elementare Losung einer Minimumsaufgabe. Zeitschrift fur math. 60, 22–23 (1929)

    Google Scholar 

  3. Roger, J.: Advanced Euclidean Geometry. Dover Publications (2007)

  4. Jalal G., Krarup J.: Geometrical solution to the Fermat problem with arbitrary weights. Ann. Oper. Res. 123, 67–104 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Nam, N.M.: The Fermat–Torricelli problem in the light of convex analysis. arXiv:1302.524403

  6. Steiner, J.: Gesammelte Werke (2 vols.). Reimer Berlin (1882)

  7. Uteshev A.Y.: Analytical solution for the generalized Fermat–Torricelli problem. Am. Math. Monthly 121, 318–331 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kupitz, Y., Martini, H., Spirova, M.: The Fermat–Torricelli problem, Part I: a discrete gradient-method approach. J. Optim. Theory Appl. 158(2), 305–327 (2013)

  9. Hajja M., Martini H., Spirova M.: New extensions of Napoleon’s theorem to higher dimensions. Beitrage zur Algebra und Geometrie 49(1), 253–264 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Boltyanski, V., Martini, H., Soltan, V.: Geometric methods and optimization problems. Combinatorial Optimization, vol. 4. Kluwer Academic Publishers, Dordrecht (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruk Abi-Khuzam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abi-Khuzam, F. Geometry of the weighted Fermat–Torricelli problem. J. Geom. 106, 443–453 (2015). https://doi.org/10.1007/s00022-014-0256-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-014-0256-9

Mathematics Subject Classification

Keyword

Navigation