Skip to main content
Log in

Prescribed diagonal Schouten tensor in locally conformally flat manifolds

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

We consider the pseudo-euclidean space \({(\mathbb{R}^n, g)}\) , with n ≥  3 and \({g_{ij} = \delta_{ij} \varepsilon_i, \varepsilon_i = \pm 1}\) and tensors of the form \({T = \sum \nolimits_i \varepsilon_i f_i (x) dx_i^2}\) . In this paper, we obtain necessary and sufficient conditions for a diagonal tensor to admit a metric \({\bar{g}}\) , conformal to g, so that \({A_{\bar g}=T}\) , where \({A_{\bar g}}\) is the Schouten Tensor of the metric \({\bar g}\) . The solution to this problem is given explicitly for special cases for the tensor T, including a case where the metric \({\bar g}\) is complete on \({\mathbb{R}^n}\) . Similar problems are considered for locally conformally flat manifolds. As an application of these results we consider the problem of finding metrics \({\bar g}\) , conformal to g, such that \({\sigma_2 ({\bar g })}\) or \({\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })}}\) is equal to a given function. We prove that for some functions, f 1 and f 2, there exist complete metrics \({\bar{g} = g/{\varphi^2}}\) , such that \({\sigma_2 ({\bar g }) = f_1}\) or \({\frac{\sigma_2 ({\bar g })}{\sigma_1 ({\bar g })} = f_2}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse, A.L.: Einstein Manifolds. Ergeb. Math. Grenzgeb., vol. 10(3). Springer, Berlin (1987)

  2. Cao J., DeTurck D.: The Ricci curvature equation with rotational symmetry. Am. J. Math. 116, 219–241 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang A., Gursky M., Yang P.: An equation of Monge–Ampëre type in conformal geometry, and four manifolds of positive Ricci curvature. Ann. Math. 155, 709–787 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corro A., Riveros C.: Surfaces with constant Chebyshev angle. Tokyo J. Math. 35, 359–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. DeTurck D.: Existence of metrics with prescribed Ricci curvature: local theory. Invent. Math. 65, 179–207 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. DeTurck, D.: Metrics with prescribed Ricci curvature. In: Yau, S.T. (ed.) Seminar on Differential Geometry. Annals of Mathematical Studies, vol. 102, pp. 525–537. Princeton University Press, Princeton (1982)

  7. DeTurck D.: The Cauchy problem for Lorentz metrics with Prescribed Ricci curvature. Composit. Math. 48, 327–349 (1983)

    MathSciNet  MATH  Google Scholar 

  8. DeTurck D., Goldschmidt H.: Metrics with prescribed Ricci curvature of constant rank. Adv. Math. 145, 1–97 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. DeTurck D., Koiso W.: Uniqueness and non-existence of metrics with prescribed Ricci curvature. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 351–359 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Ge Y., Lin C-S., Wang G.: On the σ2-scalar curvature. J. Differ. Geom. 84, 45–86 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Guan P., Lin C-S., Wang G.: Schouten tensor and some topological properties. Commun. Anal. Geom. 13, 887–902 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Hamilton, R.S.: The Ricci curvature equation. Seminar on Nonlinear Partial Differential Equations (Berkeley, California), pp. 47–72 (1983)

  13. He, Y., Sheng, W.: Prescribing the symmetric function of the eigenvalues of the Schouten tensor. Proc. AMS 139, 1127–1136 (2011)

    Google Scholar 

  14. Hu Z., Li H., Simon U.: Schouten curvature functions on locally conformally flat Riemannian manifolds. J. Geom. 88, 75–100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu Z., Nishikawa S., Simon U.: Critical metrics of the Schouten functional. J. Geom. 98, 91–113 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lohkamp J.: Metrics of negative Ricci curvature. Ann. Math. 140, 655–683 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pina R., Tenenblat K.: Conformal metrics and Ricci tensors in the pseudo-Euclidean space. Proc. Am. Math. Soc. 129, 1149–1160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pina, R., Tenenblat, K.: On metrics satisfying equation R ij Kg ij /2 =  T ij for constant tensors T. J. Geom. Phys. 40, 379–383 (2002)

  19. Pina R., Tenenblat K.: Conformal metrics and Ricci tensors on the sphere. Proc. Am. Math. Soc. 132, 3715–3724 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pina R., Tenenblat K.: On the Ricci and Einstein equations on the psseudo-euclidean and hyperbolic spaces. Difer. Geom. Appl. 24, 101–107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pina R., Tenenblat K.: A class of solutions of the Ricci and Einstein equations. J. Geom. Phys. 57, 881–888 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pina R., Tenenblat K.: On solutions of the Ricci curvature equation and the Einstein equation. Israel J. Math. 171, 61–76 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein field equations. Cambridge University press, Cambridge (2003)

  24. Viaclovsky J.A.: Conformal geometry,contact geometry and the calculus of variation. Duke Math. J. 101, 283–316 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Viaclovsky J.A.: Conformal geometry and fully nonlinear equations. Nankai Tracts Math. 11, 435–460 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romildo Pina.

Additional information

The second author is the corresponding author, partially supported by CAPES/PROCAD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieterzack, M., Pina, R. Prescribed diagonal Schouten tensor in locally conformally flat manifolds. J. Geom. 104, 341–355 (2013). https://doi.org/10.1007/s00022-013-0159-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-013-0159-1

Mathematics Subject Classification (2010)

Keywords

Navigation