Skip to main content
Log in

Feedback Stabilization of the Incompressible Navier–Stokes Equations Coupled with a Damped Elastic System in Two Dimensions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this article we study a system coupling the incompressible Navier–Stokes equations with an elastic structure governed by a damped wave equation in a two dimensional channel with periodic boundary conditions. The elastic structure is located at the upper boundary of the domain occupied by the fluid. The domain occupied by the fluid depends on the displacement of the elastic structure, and therefore it depends on time. We prove that this coupled system may be stabilized around the steady state zero, at any exponential decay rate, by a Dirichlet control acting in the lower boundary of the fluid domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Badra, M., Takahashi, T.: Feedback boundary stabilization of 2D fluid-structure interaction systems. https://hal.archives-ouvertes.fr/hal-01370000 (2016)

  2. Bensoussan, A., Da Prato, G., Delfour, M., Mitter, S.K.: Representation and control of infinite dimensional systems. Systems and Control: Foundations & Applications, 2nd edn. Birkhäuser Boston, Inc., Boston (2007)

    Book  MATH  Google Scholar 

  3. Burns, J.A., King, B.B.: A note on the mathematical modelling of damped second order systems. J. Math. Syst. Estim. Control 8, 1–12 (1998)

    MathSciNet  Google Scholar 

  4. Chen, G., Russell, D.L.: A mathematical model for linear elastic systems with structural damping. Q. Appl. Math. 39, 433–454 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, S.P., Triggiani, R.: Proof of extensions of two conjectures on structural damping for elastic systems. Pac. J. Math. 136, 15–55 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casas, E., Matéos, M., Raymond, J.-P.: Penalization of Dirichlet optimal control problems. ESAIM Control Optim. Calc. Var. 15, 782–809 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fabre, C., Lebeau, G.: Prolongement unique des solutions de l’equation de Stokes. Commun. Partial Differ. Equ. 21(3–4), 573–596 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grandmont, C., Lukáčová-Medvid’ová, M., Nečasová, S.: Mathematical and numerical analysis of some FSI problems. Fluid-structure interaction and biomedical applications, pp. 1–77, Adv. Math. Fluid Mech. Birkhäuser/Springer, Basel (2014)

  9. Grubb, G., Solonnikov, V.A.: Boundary value problems for the nonstationary Navier–Stokes equations treated by pseudo-differential methods. Math. Scand. 69(2), 217–290 (1991). (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kato, T.: Perturbation theory for linear operators, Corrected Printing of the Second Edition. Springer, Heidelberg (1980)

    Google Scholar 

  11. Lequeurre, J.: Existence of strong solutions for a system coupling the Navier–Stokes equations and a damped wave equation. J. Math. Fluid Mech. 15, 249–271 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Matignon, D., Ndiaye, M., Raymond, J.-P.: Feedback stabilization around a non zero stationary solution of a 3D fluid-structure model with a boundary control (in preparation)

  13. Ndiaye, M., Matignon, D., Raymond, J.-P.: Feedback stabilization of a 3D fluid-structure model with a boundary control, In: Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, July 7–11, University of Gröningen, Gröningen (2014)

  14. Nguyen, P.A., Raymond, J.-P.: Boundary stabilization of the Navier–Stokes equations in the case of mixed boundary conditions. SIAM J. Control Optim. 53, 3006–3039 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  16. Raymond, J.-P.: Feedback stabilization of a fluid-structure model. SIAM J. Control Optim. 48, 5398–5443 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Raymond, J.-P.: Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 921–951 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Raymond, J.-P.: Stokes and Navier-Stokes equations with a nonhomogeneous divergence condition. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1537–1564 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Raymond, J.-P., Vanninathan, M.: A fluid-structure model coupling the Navier-Stokes equations and the Lamé system. J. Math. Pures Appl. (9) 102(3), 546–596 (2014)

  20. Rudin, W.: Real and Complex Analysis, McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  21. Triggiani, R.: Regularity of some structurally damped problems with point control and with boundary control. J. Math. Anal. Appl. 161, 299–331 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Triggiani, R.: Unique continuation from an arbitrary interior subdomain of the variable-coefficient Oseen equation. Nonlinear Anal. 71, 4967–4976 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Turek, S., Hron, J., Mádlikík, M., Razzaq, M., Wobker, H., Acker, J.-F.: Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with applications to hemodynamics. In: Bungartz, H.-J., et al. (eds.) Fluid Structure Interaction II. Lecture Notes in Computational Science and Engineering, pp. 193–220. Springer, Berlin (2010)

  24. van Zuijlen, A.H., Bijl, H.: Multi-Level Accelerated sub-iterations for fluid-structure interaction. In: Bungartz, H.-J., et al. (eds.) Fluid-Structure Interaction II. Lecture Notes in Computational Science and Engineering, pp. 1–25. Springer, Berlin (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Raymond.

Additional information

Communicated by M. Tucsnak

The authors are members of an IFCAM-project, Indo-French Centre for Applied Mathematics-UMI IFCAM, Bangalore, India, supported by DST-IISc-CNRS- and Université Paul Sabatier Toulouse III. The research of D. Maity was supported by the Airbus Group Corporate Foundation Chair in Mathematics of Complex Systems established in TIFR, Bangalore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, D., Raymond, JP. Feedback Stabilization of the Incompressible Navier–Stokes Equations Coupled with a Damped Elastic System in Two Dimensions. J. Math. Fluid Mech. 19, 773–805 (2017). https://doi.org/10.1007/s00021-016-0305-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0305-2

Mathematics Subject Classification

Keywords

Navigation