Skip to main content
Log in

On the Existence of Solutions to the Muskat Problem with Surface Tension

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the Muskat Problem with surface tension in two dimensions over the real line, with H s initial data and allowing the two fluids to have different constant densities and viscosities. We take the angle between the interface and the horizontal, and derive an evolution equation for it. Via energy methods, it has been shown that a unique solution \({\theta}\) exists locally and can be continued while \({||\theta||_{s}}\) remains bounded and the arc chord condition holds. We prove that when both fluids have the same viscosity and the initial data is sufficiently small, the energy estimate is dominated by second-order dissipative terms. As a result, the energy is non-increasing, and that the resulting solution \({\theta}\) exists globally in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ambrose D.: The zero surface tension limit of two-dimensional interfacial Darcy flow. J. Math. Fluid Mech. 16, 105–143 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Castro A., Cordoba D., Fefferman C., Gancedo F.: Rayleigh–Taylor breakdown for the Muskat problem with applications to water waves. Ann. Math. 175, 909–948 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Castro A., Cordoba D., Fefferman C., Gancedo F.: Breakdown of smoothness for the Muskat problem. Arch. Ration. Mech. Anal. 208(3), 805–909 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen X.: The Hele-Shaw problem and area-preserving curve-shortening motions. Arch. Ration. Mech. Anal. 123(2), 117–151 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheng, C., Granero-Belinchon, R., Shkoller, S.: Well-posedness of the Muskat Problem with H 2 initial data. arXiv:1412.7737

  6. Constantin P., Cordoba D., Gancedo F., Strain R.: On the global existence for the Muskat problem. J. Eur. Math. Soc. 15, 201–227 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Constantin, P., Cordoba, D., Gancedo, F., Rodriguez-Piazza, L., Strain, R.: On the Muskat problem: global in time results in 2D and 3D. arXiv:1310.0953

  8. Cordoba A., Cordoba D., Gancedo F.: Interface evolution: the Hele-Shaw and Muskat problems. Ann. Math. 173, 477–542 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cordoba D., Gancedo F.: Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Commun. Math. Phys. 273, 445–471 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Cordoba D., Gancedo F.: A maximum principle for the Muskat problem for fluids with different densities. Commun. Math. Phys. 286, 681–696 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Escher J., Matioc A.-V., Matioc B.-V.: A generalized Rayleigh–Taylor condition for the Muskat problem. Nonlinearity 25(1), 73–92 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Escher J., Matioc B.-V.: On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results. Zeitschrift fur Analysis und ihre Anwendungen 30(2), 193–218 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Escher J., Simonett G.: Classical solutions for Hele-Shaw models with surface tension. Adv. Differ. Equ. 2, 619–642 (1997)

    MATH  MathSciNet  Google Scholar 

  14. Escher J., Simonett G.: A center manifold analysis for the Mullins–Sekerka model. J. Differ. Equ. 143(2), 267–292 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow, vol. 27, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

  16. Saffman P.G., Taylor G.: The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. Ser. A 245, 321–329 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Siegel M., Caflisch R., Howison S.: Global existence, singular solutions, and ill-posedness for the Muskat problem. Commun. Pure Appl. Math. 57, 1374–1411 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer Tofts.

Additional information

Communicated by G.P. Galdi

This research was partially supported by NSF Grant DMS-1500916.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tofts, S. On the Existence of Solutions to the Muskat Problem with Surface Tension. J. Math. Fluid Mech. 19, 581–611 (2017). https://doi.org/10.1007/s00021-016-0297-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0297-y

Mathematics Subject Classification

Keywords

Navigation