Skip to main content
Log in

Analysis of a system modelling the motion of a piston in a viscous gas

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study a free boundary problem modelling the motion of a piston in a viscous gas. The gas-piston system fills a cylinder with fixed extremities, which possibly allow gas from the exterior to penetrate inside the cylinder. The gas is modeled by the 1D compressible Navier–Stokes system and the piston motion is described by the second Newton’s law. We prove the existence and uniqueness of global in time strong solutions. The main novelty brought in by our results is that they include the case of nonhomogeneous boundary conditions which, as far as we know, have not been studied in this context. Moreover, even for homogeneous boundary conditions, our results require less regularity of the initial data than those obtained in previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman S.S., Wilber J.P.: The asymptotic problem for the springlike motion of a heavy piston in a viscous gas. Q. Appl. Math. 65, 471–498 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beirão da Veiga H.: Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow. Rend. Sem. Mat. Univ. Padova 79, 247–273 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Belov S.Y.: On the initial-boundary value problems for barotropic motions of a viscous gas in a region with permeable boundaries. J. Math. Kyoto Univ. 34, 369–389 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boulakia M., Guerrero S.: A regularity result for a solid-fluid system associated to the compressible Navier–Stokes equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 777–813 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Brooks R.M.,Schmitt K.: The contraction mapping principle and some applications. In: Electronic Journal of Differential Equations, vol. 9, Monograph. Texas State University–San Marcos, Department of Mathematics, San Marcos, TX (2009)

  6. Cîndea N., Micu S., Rovenţa I., Tucsnak M.: Particle supported control of a fluid-particle system. J. Math. Pures Appl. (9) 104, 311–353 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Desjardins B., Esteban M.J.: On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Commun. Partial Differ. Equ. 25, 1399–1413 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Ervedoza S., Glass O., Guerrero S.:Local exact controllability for the 2 and 3-d compressible Navier–Stokes equations. working paper or preprint, Dec. (2015)

  9. Ervedoza S., Glass O., Guerrero S., Puel J.P.: Local exact controllability for the one-dimensional compressible Navier–Stokes equation. Arch. Ration. Mech. Anal. 206, 189–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feireisl E.: On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167, 281–308 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hieber M., Murata M.: The \({L^p}\)-approach to the fluid-rigid body interaction problem for compressible fluids. Evol. Equ. Control Theory 4, 69–87 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaliev I.A., Podkuiko M.S.: Nonhomogeneous boundary value problems for equations of viscous heat-conducting gas in time-decreasing non-rectangular domains. J. Math. Fluid Mech. 10, 176–202 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Liu Y., Takahashi T., Tucsnak M.: Single input controllability of a simplified fluid-structure interaction model. ESAIM Control Optim. Calc. Var. 19, 20–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maity D.: Some controllability results for linearized compressible Navier–Stokes system. ESAIM Control Optim. Calc. Var. 21, 1002–1028 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Massey F.J.: III Abstract evolution equations and the mixed problem for symmetric hyperbolic systems. Trans. Am. Math. Soc. 168, 165–188 (1972)

    Article  MATH  Google Scholar 

  16. Rauch J.B., Massey F.J.: III Differentiability of solutions to hyperbolic initial-boundary value problems. Trans. Am. Math. Soc. 189, 303–318 (1974)

    MATH  Google Scholar 

  17. Šeluhin V.V.: Stabilization of the solution of a model problem on the motion of a piston in a viscous gas. vol. 173. Dinamika Sploshn. Sredy, Novosibirsk. pp. 134–146 (1978)

  18. Shelukhin V.V.: Unique solvability of the problem of the motion of a piston in a viscous gas. Dinamika Sploshn. Sredy, Novosibirsk. pp. 132–150 (1977)

  19. Shelukhin V.V.: Motion with a contact discontinuity in a viscous heat conducting gas, Dinamika Sploshn. Sredy, Novosibirsk. pp. 131–152 (1982)

  20. Vaĭgant V.A.: Nonhomogeneous boundary value problems for equations of a viscous heat-conducting gas. vol. 212. Dinamika Sploshn. Sredy, Novosibirsk. pp. 3–21 (1990)

  21. Vázquez J.L., Zuazua E.: Large time behavior for a simplified 1D model of fluid-solid interaction. Commun. Partial Differ. Equ. 28, 1705–1738 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vázquez, J.L., Zuazua, E.: Lack of collision in a simplified 1D model for fluid-solid interaction. Math. Models Methods Appl. Sci. 16:637–678 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Tucsnak.

Additional information

The first author is member of an IFCAM-project, Indo-French Center for Applied Mathematics—UMI IFCAM, Bangalore, India, supported by DST–IISc–CNRS—and Université Paul Sabatier Toulouse III. The research of the first author was supported by the Airbus Group Corporate Foundation Chair in Mathematics of Complex Systems established in TIFR, Bangalore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, D., Takahashi, T. & Tucsnak, M. Analysis of a system modelling the motion of a piston in a viscous gas. J. Math. Fluid Mech. 19, 551–579 (2017). https://doi.org/10.1007/s00021-016-0293-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0293-2

Mathematics Subject Classification

Keywords

Navigation