Skip to main content
Log in

Transmission Problems for the Navier–Stokes and Darcy–Forchheimer–Brinkman Systems in Lipschitz Domains on Compact Riemannian Manifolds

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study boundary value problems of transmission type for the Navier–Stokes and Darcy–Forchheimer–Brinkman systems in two complementary Lipschitz domains on a compact Riemannian manifold of dimension \({m \in \{2, 3\}}\). We exploit a layer potential method combined with a fixed point theorem in order to show existence and uniqueness results when the given data are suitably small in L 2-based Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agranovich M.S.: Elliptic singular integro-differential operators. Russ. Math. Surv. 20, 1–121 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agranovich M.S.: Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  3. Amrouche C., Nguyen H.H.: L p-weighted theory for Navier–Stokes equations in exterior domains. Commun. Math. Anal. 8, 41–69 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Amrouche C., Rodríguez-Bellido M.A.: Stationary Stokes, Oseen and Navier–Stokes Equations with Singular Data. Arch. Rat. Mech. Anal. 199, 597–651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aubin T.: Some Nonlinear Problems in Riemannian Geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  6. Behzadan, A., Holst, M.: Multiplication in Sobolev spaces. Revisited. arXiv:1512.07379v1

  7. Chkadua O., Mikhailov S.E., Natroshvili D.: Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient. I. Equivalence and invertibility. J. Int. Equ. Appl. 21, 499–542 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chkadua O., Mikhailov S.E., Natroshvili D.: Analysis of segregated boundary-domain integral equations for variable-coefficient problems with cracks. Numer. Methods Part. Differ. Equ. 27, 121–140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chkadua O., Mikhailov S.E., Natroshvili D.: Localized direct segregated boundary-domain integral equations for variable coefficient transmission problems with interface crack. Mem. Differ. Equ. Math. Phys. 52, 17–64 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Chkadua O., Mikhailov S.E., Natroshvili D.: Localized boundary-domain singular integral equations based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients. Integr. Equ. Oper. Theory. 76, 509–547 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chkadua O., Mikhailov S.E., Natroshvili D.: Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains. Anal. Appl. 11(4), 1350006 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chkadua, O., Mikhailov, S.E., Natroshvili, D.: Localized boundary-domain singular integral equations of Dirichlet problem for self-adjoint second order strongly elliptic PDE systems, pp. 1–31 (2015). arXiv:1510.04974

  13. Choe H.J., Kim H.: Dirichlet problem for the stationary Navier–Stokes system on Lipschitz domains. Commun. Partial Differ. Equ. 36, 1919–1944 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciarlet P.G., Lods V.: On the ellipticity of linear membrane shell equations. J. Math. Pures Appl. 75, 107–124 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Costabel M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dindos̆ M., Mitrea M.: Semilinear Poisson problems in Sobolev–Besov spaces on Lipschitz domains. Publ. Math. 46, 353–403 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dindos̆ M., Mitrea M.: The stationary Navier–Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C 1 domains. Arch. Rat. Mech. Anal. 174, 1–47 (2004)

    Article  MathSciNet  Google Scholar 

  18. Duduchava R., Mitrea D., Mitrea M.: Differential operators and boundary value problems on hypersurfaces. Math. Nachr. 279, 996–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ebin D.G., Marsden J.: Groups of diffeomorphisms and the notion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fabes E., Kenig C., Verchota G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fabes E., Mendez O., Mitrea M.: Boundary layers on Sobolev–Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323–368 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations, vol. I, II. Springer, Berlin (1998)

    Google Scholar 

  23. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  24. Gutt G., Kohr M., Pintea C., Wendland W.L.: On the transmission problems for the Oseen and Brinkman systems on Lipschitz domains in compact Riemannian manifolds. Math. Nachr. 289, 471–484 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hofmann S., Mitrea M., Taylor M.: Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains. Int. Math. Res. Not. No. 14, 2567–2865 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Holst M., Nacy G., Tsogtgerel G.: Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions. Commun. Math. Phys. 288, 547–613 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Hsiao G.C., Wendland W.L.: Boundary Integral Equations: Variational Methods. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  28. Ivancevic V.G., Ivancevic T.T.: Geometrical Dynamics of Complex Systems: A Unified Modelling Approach to Physics, Control, Biomechanics, Neurodynamics and Psycho-Socio-Economical Dynamics. Springer, Dordrecht (2006)

    Book  MATH  Google Scholar 

  29. Jerison D.S., Kenig C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kantorovich K.L., Akilov G.P.: Functional Analysis. Pergamon, Oxford (1982)

    MATH  Google Scholar 

  31. Klingenberg W.: Eine Vorlesung über Differentialgeometrie. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  32. Kohr, M., Lanza de Cristoforis, M., Mikhailov, S.E., Wendland, W.L.: Integral potential method for transmission problem with Lipschitz interface in \({{\mathbb R}^3}\) for the Stokes and Darcy–Forchheimer–Brinkman PDE systems, pp. 1–31 (2015). arXiv:1510.04981

  33. Kohr M., Lanza de Cristoforis M., Wendland W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potent. Anal. 38, 1123–1171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kohr M., Lanza de Cristoforis M., Wendland W.L.: Boundary value problems of Robin type for the Brinkman and Darcy–Forchheimer–Brinkman systems in Lipschitz domains. J. Math. Fluid Mech. 16, 595–630 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Nonlinear Darcy–Forchheimer–Brinkman system with linear Robin boundary conditions in Lipschitz domains. In: Aliev Azeroglu, T., Golberg, A., Rogosin, S. (eds.) Complex Analysis and Potential Theory, pp. 111–124. Cambridge Scientific Publishers, Cambridge (2014). ISBN 978-1-908106-40-7

  36. Kohr M., Lanza de Cristoforis M., Wendland W.L.: Poisson problems for semilinear Brinkman systems on Lipschitz domains in \({{\mathbb{R}}^n}\). Z. Angew. Math. Phys. 66, 833–864 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kohr M., Lanza de Cristoforis M., Wendland W.L.: On the Robin-transmission boundary value problems for the nonlinear Darcy–Forchheimer–Brinkman and Navier–Stokes systems. J. Math. Fluid Mech. 18, 293–329 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Kohr, M., Mikhailov, S.E.: Dirichlet-transmission problems for the Navier–Stokes and Darcy–Forchheimer–Brinkman systems in Lipschitz domains with interior cuts (In preparation)

  39. Kohr M., Pintea C., Wendland W.L.: Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman operators. Int. Math. Res. Not. No. 19, 4499–4588 (2013)

    MathSciNet  MATH  Google Scholar 

  40. Kohr M., Pintea C., Wendland W.L.: Poisson-transmission problems for \({L^{\infty}}\) perturbations of the Stokes system on Lipschitz domains in compact Riemannian manifolds. J. Dynam. Differ. Equ. 27, 823–839 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kohr M., Pop I.: Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press, Southampton (2004)

    MATH  Google Scholar 

  42. Kühnel W.: Differentialgeometrie. Vieweg & Sohn, Braunschweig/Wiesbaden (1999)

    Book  MATH  Google Scholar 

  43. Lang S.: Introduction to Differentiable Manifolds, 2nd edn. Springer, New-York (2002)

    MATH  Google Scholar 

  44. Lawson H.B. Jr., Michelsohn M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  45. McLean W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  46. Lee J.M.: Introduction to Smooth Manifolds. Springer, New York (2003)

    Book  Google Scholar 

  47. Medková D.: Transmission problem for the Brinkman system. Complex Var. Elliptic Equ. 59, 1664–1678 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mikhailov S.E.: Direct localized boundary-domain integro-differential formulations for physically nonlinear elasticity of inhomogeneous body. Engng. Anal. Bound. Elem. 29, 1008–1015 (2005)

    Article  MATH  Google Scholar 

  49. Mikhailov S.E.: Localized direct boundary-domain integro-differential formulations for scalar nonlinear boundary-value problems with variable coefficients. J. Engrg. Math. 51, 283–302 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Mikhailov S.E.: Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Anal. Appl. 378, 324–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Mikhailov S.E.: Solution regularity and co-normal derivatives for elliptic systems with non-smooth coefficients on Lipschitz domains. J. Math. Anal. Appl. 400, 48–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mikhailov, S.E.: Segregated boundary-domain integral equations for variable-coefficient Dirichlet and Neumann problems with general data. arXiv:1509.03501v1

  53. Mitrea D., Mitrea M., Qiang S.: Variable coefficient transmission problems and singular integral operators on non-smooth manifolds. J. Integral Equ. Appl. 18, 361–397 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mitrea M., Monniaux S., Wright M.: The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. (New York) 176(3), 409–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Mitrea M., Taylor M.: Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163, 181–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  56. Mitrea M., Taylor M.: Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem. J. Funct. Anal. 176, 1–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mitrea M., Taylor M.: Navier–Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344 (2012)

  59. Nash J.: The imbedding problem for Riemannian manifolds. Annals of Mathematics. 63(1), 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  60. Nield D.A., Bejan A.: Convection in Porous Media, 3rd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  61. Ochoa-Tapia J.A., Whitacker S.: Momentum transfer at the boundary between porous medium and homogeneous fluid—I. Theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995)

    Article  MATH  Google Scholar 

  62. Ochoa-Tapia J.A., Whitacker S.: Momentum transfer at the boundary between porous medium and homogeneous fluid—II. Comparison with experiment. Int. J. Heat Mass Transf. 38, 2647–2655 (1995)

    Article  Google Scholar 

  63. Runst T., Sickel W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. De Gruyter, Berlin (1996)

    Book  MATH  Google Scholar 

  64. Russo A., Starita G.: On the existence of steady-state solutions to the Navier–Stokes system for large fluxes. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 7, 171–180 (2008)

    MathSciNet  MATH  Google Scholar 

  65. Russo R., Tartaglione A.: On the Robin problem for Stokes and Navier–Stokes systems. Math. Models Methods Appl. Sci. 19, 701–716 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  66. Russo A., Tartaglione A.: On the Oseen and Navier–Stokes systems with a slip boundary condition. Appl. Math. Lett. 22, 674–678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  67. Semmelmann U.: Conformal Killing forms on Riemannian manifolds. Math. Z. 245, 503–527 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  68. Taylor M.: Partial Differential Equations, vol. 1. Springer, New York (1996)

    Book  Google Scholar 

  69. Temam, R., Ziane, M.: Navier–Stokes equations in thin spherical domains. In: Optimization Methods in Partial Differential Equations. Contemporary Mathematics, vol. 209, pp. 281-314. Amer. Math. Soc., Providence (1997)

  70. Temam R., Wang S.H.: Inertial forms of Navier–Stokes equations on the sphere. J. Funct. Anal. 117, 215–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  71. Triebel H.: Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Rev. Mat. Complut. 15, 475–524 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wloka J.T., Rowley B., Lawruk B.: Boundary Value Problems for Elliptic Systems. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang L. Wendland.

Additional information

Communicated by M. Feistauer

M. Kohr acknowledges the support of the Grant PN-II-ID-PCE-2011-3-0994 of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI. The research has been also partially supported by the Grant EP/M013545/1: “Mathematical Analysis of Boundary-Domain Integral Equations for Nonlinear PDEs” from the EPSRC, UK.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohr, M., Mikhailov, S.E. & Wendland, W.L. Transmission Problems for the Navier–Stokes and Darcy–Forchheimer–Brinkman Systems in Lipschitz Domains on Compact Riemannian Manifolds. J. Math. Fluid Mech. 19, 203–238 (2017). https://doi.org/10.1007/s00021-016-0273-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0273-6

Mathematics Subject Classification

Keywords

Navigation