Skip to main content
Log in

A Singular Limit Problem for Rotating Capillary Fluids with Variable Rotation Axis

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In the present paper we study a singular perturbation problem for a Navier–Stokes–Korteweg model with Coriolis force. Namely, we perform the incompressible and fast rotation asymptotics simultaneously, while we keep the capillarity coefficient constant in order to capture surface tension effects in the limit. We consider here the case of variable rotation axis: we prove the convergence to a linear parabolic-type equation with variable coefficients. The proof of the result relies on compensated compactness arguments. Besides, we look for minimal regularity assumptions on the variations of the axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin A., Mahalov A., Nicolaenko B.: Global regularity of 3D rotating Navier–Stokes equations for resonant domains. Indiana Univ. Math. J. 48(3), 1133–1176 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. In: Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 343. Springer, Heidelberg (2011)

  3. Bresch D., Desjardins B.: Existence of global weak solution for a 2D viscous shallow water equation and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238(1–2), 211–223 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bresch D., Desjardins B.: Quelques modèles diffusifs capillaires de type Korteweg. C. R. Acad. Sci. Paris Sect. Mécanique 332(11), 881–886 (2004)

    MATH  Google Scholar 

  5. Bresch D., Desjardins B.: On the existence of global weak solutions to the Navier–Stokes equations for viscous compressible and heat conducting fluids. J. Math. Pures Appl. 87, 57–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bresch D., Desjardins B., Gérard-Varet D.: Rotating fluids in a cylinder. Discret. Cont. Dyn. Syst. 11, 47–82 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bresch D., Desjardins B., Lin C.-K.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ. 28(3-4), 843–868 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bresch, D., Desjardins, B., Métivier, G.: Recent mathematical results and open problems about shallow water equations. In: Adv. Math. Fluid Mech, pp. 15–31. Birkhäuser, Basel (2007)

  9. Bresch D., Desjardins B., Zatorska E.: Two-velocity hydrodynamics in fluid mechanics: part II. Existence of global \({\kappa}\)-entropy solutions to compressible Navier–Stokes systems with degenerate viscosities. J. Math. Pures Appl. 104(4), 801–836 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bresch D., Giovangigli V., Zatorska E.: Two-velocity hydrodynamics in fluid mechanics: part I. Well-posedness for zero Mach number systems. J. Math. Pures Appl. 104(4), 762–800 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical geophysics. An introduction to rotating fluids and the Navier–Stokes equations. In: Oxford Lecture Series in Mathematics and its Applications, vol. 32. Oxford University Press, Oxford (2006)

  12. Fanelli, F.: Highly rotating viscous compressible fluids in presence of capillarity effects. Math. Ann. (2015) (accepted for publication)

  13. Feireisl E., Gallagher I., Gérard-Varet D., Novotný A.: Multi-scale analysis of compressible viscous and rotating fluids. Commun. Math. Phys. 314(3), 641–670 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Feireisl E., Gallagher I., Novotný A.: A singular limit for compressible rotating fluids. SIAM J. Math. Anal. 44(1), 192–205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. In: Advances in Mathematical Fluid Mechanics. Birkhäuser Verlag, Basel (2009)

  16. Gallagher I.: A mathematical review of the analysis of the betaplane model and equatorial waves. Discret. Contin. Dyn. Syst. Ser. S 1(3), 461–480 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gallagher I., Saint-Raymond L.: Weak convergence results for inhomogeneous rotating fluid equations. J. Anal. Math. 99, 1–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gallagher, I., Saint-Raymond, L.: Mathematical study of the betaplane model: equatorial waves and convergence results. Mém. Soc. Math. Fr. 107 (2006)

  19. Jüngel A.: Global weak solutions to compressible Navier–Stokes equations for quantum fields. SIAM J. Math. Anal. 42(3), 1025–1045 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jüngel A., Lin C.-K., Wu K.-C.: An asymptotic limit of a Navier–Stokes system with capillary effects. Commun. Math. Phys. 329(2), 725–744 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kitavtsev G., Laurençot P., Niethammer B.: Weak solutions to lubrication equations in the presence of strong slippage. Methods Appl. Anal. 18(2), 183–202 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Lions P.-L., Masmoudi N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77(6), 585–627 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lions P.-L., Masmoudi N.: Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Sér. I Math. 329(5), 387–392 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  24. Masmoudi N.: Rigorous derivation of the anelastic approximation. J. Math. Pures Appl. 88(5), 387–392 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Mellet A., Vasseur A.F.: On the barotropic compressible Navier–Stokes equations. Commun. Partial Differ. Equ. 32(1–3), 431–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Métivier, G.: Para-differential calculus and applications to the Cauchy problem for nonlinear systems. In: Centro di Ricerca Matematica “Ennio De Giorgi” (CRM) Series, vol. 5. Edizioni della Normale, Pisa (2008)

  27. Mucha P.B., Pokorný M., Zatorska E.: Approximate solutions to model of two-component reactive flow. Discret. Contin. Dyn. Syst. Ser. S 7(5), 1079–1099 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pedlosky J.: Geophysical fluid dynamics. Springer, New-York (1987)

    Book  MATH  Google Scholar 

  29. Vasseur, A.F., Yu, C.: Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations (2015). arxiv:1501.06803. (Submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fanelli.

Additional information

Communicated by E. Feireisl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanelli, F. A Singular Limit Problem for Rotating Capillary Fluids with Variable Rotation Axis. J. Math. Fluid Mech. 18, 625–658 (2016). https://doi.org/10.1007/s00021-016-0256-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0256-7

Mathematics Subject Classification

Keywords

Navigation