Skip to main content
Log in

The Navier–Stokes Equations Under a Unilateral Boundary Condition of Signorini’s Type

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We propose a new outflow boundary condition, a unilateral condition of Signorini’s type, for the incompressible Navier–Stokes equations. The condition is a generalization of the standard free-traction condition. Its variational formulation is given by a variational inequality. We also consider a penalty approximation, a kind of the Robin condition, to deduce a suitable formulation for numerical computations. Under those conditions, we can obtain energy inequalities that are key features for numerical computations. The main contribution of this paper is to establish the well-posedness of the Navier–Stokes equations under those boundary conditions. Particularly, we prove the unique existence of strong solutions of Ladyzhenskaya’s class using the standard Galerkin’s method. For the proof of the existence of pressures, however, we offer a new method of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyer F., Fabrie P.: Outflow boundary conditions for the incompressible non-homogeneous Navier–Stokes equations. Discrete Contin. Dyn. Syst. Ser. B 7, 219–250 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Boyer F., Fabrie P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations on Related Models. Springer, Berlin (2012)

    MATH  Google Scholar 

  3. Bruneau C.H., Fabrie P.: Effective downstream boundary conditions for incompressible NavierStokes equations. Int. J. Numer. Methods Fluids 19, 693–705 (1994)

    Article  ADS  MATH  Google Scholar 

  4. Bruneau C.H., Fabrie P.: New efficient boundary conditions for incompressible Navier–Stokes equations: a well-posedness result. RAIRO Modél. Math. Anal. Numér. 30, 815–840 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Bazilevs Y., Gohean J.R., Hughes T.J.R., Moser R.D., Zhang Y.: Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput. Methods Appl. Mech. Eng. 198, 3534–3550 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bothe D., Köhne M., Prüss J.: On a class of energy preserving boundary conditions for incompressible newtonian flows. SIAM J. Math. Anal. 45, 3768–3822 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duvaut G., Lions J.L.: Les Inéquations en Méchanique et en Physique. Dunod, Paris (1972)

    MATH  Google Scholar 

  8. Formaggia, L., Quarteroni, A., Veneziani, A., (eds).: Cardiovascular Mathematics. Springer, Berlin (2009)

  9. Formaggia L., Gerbeau J.F., Nobile F., Quarteroni A.: Numerical treatment of defective boundary conditions for the Navier–Stokes equations. SIAM J. Numer. Anal. 40, 376–401 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gresho, P.M., Sani, R.L.: Incompressible Flow and the Finite Element Method, Volume 2, Isothermal Laminar Flow. Wiley, New York (2000)

  11. Grisvard, P.: Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical Solution of P.D.E’s III (Proc. Third Sympos. (SYNSPADE), Univ. Maryland, College Park, Md., 1975), pp. 207–274, Academic Press (1976)

  12. Heywood J.G., Rannacher R., Turek S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kashiwabara T.: On a strong solution of the non-stationary Navier–Stokes equations under slip or leak boundary conditions of friction type. J. Differ. Equ. 254, 756–778 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)

  15. Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach Sci. Publ., London (1969)

    MATH  Google Scholar 

  16. Lions J.L., Magenes E.: Non-homogeneous Boundary Value Problems and Applications, I. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  17. Labeur R.J., Wells G.N.: Energy stable and momentum conserving hybrid finite element method for the incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 34, 889–913 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nečas J.: Direct Methods in the Theory of Elliptic Equations. Springer, Berlin (2011)

    Google Scholar 

  19. Saito, N., Sugitani, Y., Zhou, G.: Energy inequalities and outflow boundary conditions for the Navier–Stokes equations. To appear in Advances in Computational Fluid-Structure, Birkhauser

  20. Saito, N., Sugitani, Y., Zhou, G.: Unilateral problem for the Stokes equations: the well-posednes and finite element approximation. UTMS Preprint Series, UTMS 2015-3. http://www.ms.u-tokyo.ac.jp/preprint_e/2015/

  21. Sohr H.: The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  22. Taylor C.A., Hughes T.J., Zarins C.K.: Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158, 155–196 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Takizawa, K.: Private communication

  24. Temam R.: Navier–Stokes Equations. Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001)

    MATH  Google Scholar 

  25. Uchikawa, H., Sasaki, T., Takizawa, K., Tezduyar, T., Saito, N.: Modelling of the outlet BC in aorta fluid mechanics computation with the space-time isogeometric analysis. Presentation at CFD2015: The 28th Symposium on Computational Fluid Dynamics, Kyushu University, Fukuoka, Japan (2015)

  26. Vignon-Clementel I.E., Figueroa C.A., Jansenc K.E., Taylor C.A.: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195, 3776–3796 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanyu Zhou.

Additional information

Communicated by Y. Shibata

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Saito, N. The Navier–Stokes Equations Under a Unilateral Boundary Condition of Signorini’s Type. J. Math. Fluid Mech. 18, 481–510 (2016). https://doi.org/10.1007/s00021-016-0248-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0248-7

Mathematics Subject Classification

Keywords

Navigation