Skip to main content
Log in

Global Weak Solutions to the Magnetohydrodynamic and Vlasov Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

An initial-boundary value problem for the fluid–particle system of the inhomogeneous incompressible magnetohydrodynamic equations coupled with the Vlasov equation is studied in a three-dimensional bounded domain. New ideas are introduced to construct the approximate solutions. The existence of global weak solutions is established by the energy estimates and the weak convergence method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anoshchenko, O., Khruslov, E., Stephan, H.: Global weak solutions to the Navier-Stokes–Vlasov–Poisson system. Zh. Mat. Fiz. Anal. Geom. 6(2), 143–182, 247, 249 (2010)

  2. Baranger C., Boudin L., Jabin P.-E., Mancini S.: A modeling of biospray for the upper airways. ESAIM: Proc. 14, 41–47 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Baranger C., Desvillettes L.: Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions. J. Hyperbolic Differ. Equ. 3(1), 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyer F., Fabrie P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes equations and related models. Appl. Math. Sci. 183. Springer, New York (2013)

    MATH  Google Scholar 

  5. Boudin L., Desvillettes L., Grandmont C., Moussa A.: Global existence of solutions for the coupled Vlasov and Navier-Stokes equations. Differ. Integral Equ. 22(11–12), 1247–1271 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Bostan M.: Weak solutions for the Vlasov–Poisson initial-boundary value problem with bounded electric field Chin. Ann. Math. Ser. B 28(4), 389–420 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beals R., Protopopescu V.: An abstract time dependant transport equations. J. Math. Anal. Appl. 121, 370–405 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carrillo J.A.: Global weak solutions for the initial-boundary-value problems to the Vlasov–Poisson–Fokker–Planck system. Math. Methods Appl. Sci. 21, 10,907–938 (1998)

    MathSciNet  Google Scholar 

  9. Carrillo J.A., Duan R., Moussa A.: Global classical solutions close to equilibrium to the Vlasov–Fokker–Planck–Euler system. Kinetic Related Models 4(1), 227–258 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caflisch R., Papanicolaou G.C.: Dynamic theory of suspensions with brownian effects. SIAM J. Appl. Math. 43(4), 885–906 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Domelevo, K.: Long time behavior for a kinetic modeling of two phase flows with thin sprays and point particles. Preprint de TMR-project ”Asymptotics Methods in Kinetic Theory” (2001)

  12. DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. DiPerna R.J., Lions P.-L., Meyer Y.: \({L^{p}}\) regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire 8(3–4), 271–287 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Domelevo K., Roquejoffre J.-M.: Existence and stability of travelling waves solutions in a kinetic model of two phase flows. Comm. Part. Diff. Eq. 24(1–2), 61–108 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Domelevo K., Vignal M.-H.: Limits visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels. C. R. Acad. Sci. Paris. Sér. I Math. 332(9), 863–868 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Ser. Math. Appl. Oxford University Press, Oxford (2004)

  17. Gemci T., Corcoran T.E., Chigier N.: A numerical and experimental study of spray dynamics in a simple throat model. Aerosol Sci. Technol. 36, 18–38 (2002)

    Article  Google Scholar 

  18. Goudon T., He L., Moussa A., Zhang P.: The Navier-Stokes–Vlasov–Fokker–Planck system near equillibrium. SIAM J. Math. Anal. 42(5), 2177–2202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goudon T., Jabin P.-E., Vasseur A.: Hydrodynamic limit for the Vlasov–Navier-Stokes equations. I. Light particles regime. Indiana Univ. Math. J. 53(6), 1495–1515 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goudon T., Jabin P.-E., Vasseur A.: Hydrodynamic limit for the Vlasov–Navier-Stokes equations. II. Fine particles regime. Indiana Univ. Math. J. 53(6), 1517–1536 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo Y.: Global weak solutions of the Vlasov–Maxwell system with boundary conditions. Comm. Math. Phys. 154(2), 245–263 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Hamdache K.: Global existence and large time behaviour of solutions for the Vlasov–Stokes equations. Jpn. J. Indust. Appl. Math. 15(1), 51–74 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu X., Wang D.: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch. Rational Mech. Anal. 197(1), 203–238 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Hwang H.J.: Regularity for the Vlasov–Poisson system in a convex domain. SIAM J. Math. Anal. 36(1), 121–171 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 1. Incompressible Models. Oxford Lecture Ser. Math. Appl. 3. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1996)

  26. Mischler S.: On the initial boundary value problem for the Vlasov–Poisson–Boltzmann system. Comm. Math. Phys. 210(2), 447–466 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Mellet A., Vasseur A.: Global weak solutions for a Vlasov–Fokker–Planck/Navier-Stokes system of equations. Math. Models Methods Appl. Sci. 17(7), 1039–1063 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mellet A., Vasseur A.: Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations. Comm. Math. Phys. 281(3), 573–596 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. O’Rourke P.J.: Collective drop effects on vaporizing liquid sprays. PhD thesis, Los Alamos National Laboratory (1981)

  30. Ranz W.E., Marshall W.R.: Evaporization from drops, part I–II. Chem. Eng. Prog. 48(3), 141–180 (1952)

    Google Scholar 

  31. Sermange M., Temam R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. XXXVI, 635–664 (1983)

  32. Wang D., Yu C.: Global weak solutions to the inhomogeneous Navier-Stokes–Vlasov equations. J. Differ. Equ. 259(8), 3976–4008 (2015)

    Article  ADS  MATH  Google Scholar 

  33. Williams F.A.: Combustion Theory. Benjamin Cummings, San Francisco (1985)

    Google Scholar 

  34. Yu C.: Global weak solutions to the incompressible Navier-Stokes–Vlasov equations. J. Math. Pures Appl. (9) 100(2), 275–293 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu, C.: Global well-posedness for the two dimensional Navier-Stokes–Vlasov equations, preprint, (2014). arXiv:1207.4718

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Ming Chen.

Additional information

Communicated by G.-Q. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.M., Hu, J. & Wang, D. Global Weak Solutions to the Magnetohydrodynamic and Vlasov Equations. J. Math. Fluid Mech. 18, 343–360 (2016). https://doi.org/10.1007/s00021-015-0238-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-015-0238-1

Mathematics Subject Classification

Keywords

Navigation