Skip to main content
Log in

The Incompressible Navier–Stokes System with Time-Dependent Robin-Type Boundary Conditions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We show that the incompressible 3D Navier–Stokes system in a \({{\mathscr{C}}^{1,1}}\) bounded domain or a bounded convex domain \({\Omega}\) with a non penetration condition \({\nu\cdot u=0}\) at the boundary \({\partial\Omega}\) together with a time-dependent Robin boundary condition of the type \({\nu\times{\rm curl}\,u=\beta(t) u}\) on \({\partial\Omega}\) admits a solution with enough regularity provided the initial condition is small enough in an appropriate functional space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Amrouche C., Bernardi C., Dauge M., Girault V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Arendt W., Dier D., Laasri H., Ouhabaz E.M.: Maximal regularity for evolution equations governed by non-autonomous forms. Adv. Diff. Equ. 19(11–12), 1043–1066 (2014)

    MATH  MathSciNet  Google Scholar 

  3. Arendt, W., Monniaux, S.: Maximal regularity for non-autonomous Robin boundary conditions. Math. Nachr. (to appear) (2015). arXiv:1410.3063

  4. Basson A., Gérard-Varet D.: Wall laws for fluid flows at a boundary with random roughness. Comm. Pure Appl. Math. 61(7), 941–987 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beirãoda Veiga H.: Remarks on the Navier–Stokes evolution equations under slip type boundary conditions with linear friction. Port. Math. (N.S.) 64(4), 377–387 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bucur D., Feireisl E., Nečasová Š.: Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions. Arch. Ration. Mech. Anal. 197(1), 117–138 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Costabel M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. 12(4), 365–368 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Costabel M., McIntosh A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dautray, R., Lions, J.-L.: Analyse mathématique et calcul numérique pour les sciences et les techniques, vol. 8, INSTN: Collection Enseignement. [INSTN: Teaching Collection], Masson, Paris, 1988, Évolution: semi-groupe, variationnel. [Evolution: semigroups, variational methods], Reprint of the 1985 edition

  10. Fujita H., Kato T.: On the Navier–Stokes initial value problem. I. Arch. Rational Mech. Anal. 16, 269–315 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Gérard-Varet D., Masmoudi N.: Relevance of the slip condition for fluid flows near an irregular boundary. Comm. Math. Phys. 295(1), 99–137 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Haak, B.H., Ouhabaz, E.M.: Maximal regularity for non autonomous evolution equations. Math. Annalen (to appear) (2015). doi:10.1007/s00208-015-1199-7

  13. Jäger W., Mikelić A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Diff. Equ. 170(1), 96–122 (2001)

    Article  MATH  ADS  Google Scholar 

  14. Kato T.: Frational powers of dissipative operators. II. J. Math. Soc. Jpn. 14, 242–248 (1962)

    Article  MATH  Google Scholar 

  15. Lemarié-Rieusset, P.G.: Recent developments in the Navier–Stokes problem. Chapman & Hall/CRC Research Notes in Mathematics, vol. 431, pp. xiv+395, (2002)

  16. Lions, J.-L., Magenes, E.: Problèmes aux limites non homogènes et applications. Vol. 1. Travaux et Recherches Mathématiques, vol. 17, Dunod, Paris (1968)

  17. Lions J.L.: Espaces d’interpolation et domaines de puissances fractionnaires d’opérateurs. J. Math. Soc. Jpn. 14, 233–241 (1962)

    Article  MATH  Google Scholar 

  18. Mitrea M.: Sharp Hodge decompositions, Maxwell’s equations, and vector Poisson problems on nonsmooth, three-dimensional Riemannian manifolds. Duke Math. J. 125(3), 467–547 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mitrea M., Monniaux S.: The regularity of the Stokes operator and the Fujita–Kato approach to the Navier–Stokes initial value problem in Lipschitz domains. J. Funct. Anal. 254(6), 1522–1574 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mitrea M., Monniaux S.: The nonlinear Hodge–Navier–Stokes equations in Lipschitz domains. Diff. Integral Equ. 22(3-4), 339–356 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Mitrea M., Monniaux S.: On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds. Trans. Am. Math. Soc. 361(6), 3125–3157 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Miyakawa T.: The L p approach to the Navier–Stokes equations with the Neumann boundary condition. Hiroshima Math. J. 10, 517–537 (1980)

    MATH  MathSciNet  Google Scholar 

  23. Monniaux S.: Navier–Stokes equations in arbitrary domains: the Fujita–Kato scheme. Math. Res. Lett. 13(2–3), 455–461 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Monniaux S.: Traces of non regular vector fields on Lipschitz domains. Op. Theory Adv. Appl. 250, 343–351 (2015)

    Google Scholar 

  25. Navier C.-L.: Mémoire sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Paris 6, 389–440 (1823)

    Google Scholar 

  26. Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris (1967)

  27. Nečas, J.: Direct methods in the theory of elliptic equations, Springer Monographs in Mathematics, Springer, Heidelberg, 2012, Translated from the 1967 French original by Gerard Tronel and Alois Kufner, Editorial coordination and preface by Šárka Nečasová and a contribution by Christian G. Simader

  28. Ouhabaz, E.M.: Analysis of Heat Equations on Domains, London Mathematical Society Monographs Series, vol. 31. Princeton University Press, Princeton (2005)

  29. Ouhabaz E.M.: Maximal regularity for non-autonomous evolution equations governed by forms having less regularity. Arch. Math. 105, 79–91 (2015)

    Article  MathSciNet  Google Scholar 

  30. Temam, R.: Navier–Stokes Equations, revised ed., Studies in Mathematics and its Applications, vol. 2, North-Holland, Amsterdam, 1979, Theory and numerical analysis, With an appendix by F. Thomasset

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Monniaux.

Additional information

Communicated by M. Hieber

The research of both authors was partially supported by the ANR Project HAB, ANR-12-BS01-0013-02 and ANR-12-BS01-0013-03.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monniaux, S., Ouhabaz, E.M. The Incompressible Navier–Stokes System with Time-Dependent Robin-Type Boundary Conditions. J. Math. Fluid Mech. 17, 707–722 (2015). https://doi.org/10.1007/s00021-015-0227-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-015-0227-4

Mathematics Subject Classification

Keywords

Navigation