Skip to main content
Log in

Boundary Value Problems of Robin Type for the Brinkman and Darcy–Forchheimer–Brinkman Systems in Lipschitz Domains

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to study boundary value problems of Robin type for the Brinkman system and a semilinear elliptic system, called the Darcy–Forchheimer–Brinkman system, on Lipschitz domains in Euclidean setting. In the first part of the paper, we exploit a layer potential analysis and a fixed point theorem to show the existence and uniqueness of the solution to the nonlinear Robin problem for the Darcy–Forchheimer–Brinkman system on a bounded Lipschitz domain in \({\mathbb{R}^n}\) \({(n \in \{2,3\})}\) with small data in L 2-based Sobolev spaces. In the second part, we show an existence result for the mixed Dirichlet–Robin problem for the same semilinear Darcy–Forchheimer-Brinkman system on a bounded creased Lipschitz domain in \({\mathbb{R}^3}\) with small L 2-boundary data. We also study mixed Dirichlet–Robin problems and boundary value problems of mixed Dirichlet–Robin and transmission type for Brinkman systems on bounded creased Lipschitz domains in \({\mathbb{R}^n}\) (n ≥ 3). Finally, we show the well-posedness of the Navier problem for the Brinkman system with boundary data in some L 2-based Sobolev spaces on a bounded Lipschitz domain in \({\mathbb{R}^3}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amrouche C., El Houda Seloula N.: On the Stokes equations with the Navier-type boundary conditions. Differ. Equ. Appl. 3, 581–607 (2011)

    MATH  MathSciNet  Google Scholar 

  2. Amrouche, C., Rejaiba, A.: L p-theory for Stokes and Navier–Stokes equations with Navier boundary condition. J. Differ. Equ. (2014, in press)

  3. Begehr H., Hsiao G.C.: Nonlinear boundary value problems of Riemann–Hilbert type. Contemp. Math. 11, 139–153 (1982)

    Article  MATH  Google Scholar 

  4. Berg S., Cense A.W., Hofman J.P., Smits R.M.M.: Two-phase flow in porous media with slip boundary condition. Transp. Porous Med. 74, 275–292 (2008)

    Article  Google Scholar 

  5. Băcuţă C., Mazzucato A.L., Nistor V., Zikatanov V.L.: Interface and mixed boundary value problems on n-dimensional polyhedral domains. Documenta Math. 15, 689–747 (2010)

    Google Scholar 

  6. Brown R.: The mixed problem for Laplace’s equation in a class of Lipschitz domains. Commun. Partial Differ. Equ. 19, 1217–1233 (1994)

    Article  MATH  Google Scholar 

  7. Brown R.M., Mitrea I.: The mixed problem for the Lamé system in a class of Lipschitz domains. J. Differ. Equ. 246, 2577–2589 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Brown R., Mitrea I., Mitrea M., Wright M.: Mixed boundary value problems for the Stokes system. Trans. Am. Math. Soc. 362, 1211–1230 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Buffa A., Costabel M., Sheen D.: On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cakoni F., Hsiao G.C., Wendland W.L.: On the boundary integral equation method for a mixed boundary value problem of the biharmonic equation. Complex Var. 50, 681–696 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chkadua O., Mikhailov S.E., Natroshvili D.: Localized boundary-domain singular integral equations based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients. Integr. Equ. Oper. Theory. 76, 509–547 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Choe H.J., Kim H.: Dirichlet problem for the stationary Navier–Stokes system on Lipschitz domains. Commun. Partial Differ. Equ. 36, 1919–1944 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Costabel M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Costabel M., Stephan E.: Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation. Math. Models Methods Mech. 15, 175–251 (1985)

    MathSciNet  Google Scholar 

  15. Dahlberg B.E.J., Kenig C.: Hardy spaces and the Neumann problem in L p for Laplace’s equation in Lipschitz domains. Ann. Math. 125, 437–465 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dahlberg B.E.J., Kenig C., Verchota G.C.: Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57, 795–818 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dalla Riva M.: Stokes flow in a singularly perturbed exterior domain. Complex Var. Elliptic Equ. 58, 231–257 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dalla Riva M., Lanza de Cristoforis M.: Microscopically weakly singularly perturbed loads for a nonlinear traction boundary value problem: a functional analytic approach. Complex Var. Elliptic Equ. 55, 771–794 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dalla Riva M., Lanza de Cristoforis M.: Weakly singular and microscopically hypersingular load perturbation for a nonlinear traction boundary value problem: a functional analytic approach. Complex Anal. Oper. Theory. 5, 811–833 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dalla Riva M., Musolino P.: A singularly perturbed nonideal transmission problem and application to the effective conductivity of a periodic composite. SIAM J. Appl. Math. 73, 24–46 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Deen W.M.: Analysis of Transport Phenomena. Oxford University Press, NY (1998)

    Google Scholar 

  22. Dindos̆ M.: Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds. Commun. Partial Differ. Equ. 27, 219–281 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Dindos̆ M.: Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds II. Trans. Am. Math. Soc. 355, 1365–1399 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dindos̆ M., Mitrea M.: Semilinear Poisson problems in Sobolev–Besov spaces on Lipschitz domains. Publ. Math. 46, 353–403 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dindos̆ M., Mitrea M.: The stationary Navier–Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C 1 domains. Arch. Ration. Mech. Anal. 174, 1–47 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Fabes E., Kenig C., Verchota G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fabes E., Mendez O., Mitrea M.: Boundary layers on Sobolev–Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323–368 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Fitzpatrick, P., Pejsachowicz, J.: Orientation and the Leray-Schauder theory for fully nonlinear elliptic boundary value problems. Mem. Am. Math. Soc. 101(483), vi+131 pp. (1993)

  29. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vols. I, II, revised edition. Springer, Berlin (1998)

  30. Hsiao G.C., Wendland W.L.: Boundary Integral Equations: Variational Methods. Springer, Heidelberg (2008)

    Book  Google Scholar 

  31. Jerison D.S., Kenig C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kalton N.J., Mayboroda S., Mitrea M.: Interpolation of Hardy–Sobolev–Besov–Triebel–Lizorkin spaces and applications to problems in partial differential equations. Contemp. Math. 445, 121–177 (2007)

    Article  MathSciNet  Google Scholar 

  33. Klingelhöfer, K.: Nonlinear harmonic boundary value problems. I. Arch. Ration. Mech. Anal. 31, 364–371 (1968/1969)

  34. Klingelhöfer K.: Nonlinear harmonic boundary value problems. II. Modified Hammerstein integral equations. J. Math. Anal. Appl. 25, 592–606 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kohr M., Lanza de Cristoforis M., Wendland W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38, 1123–1171 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Poisson problems for semilinear Brinkman systems on Lipschitz domains in \({{\mathbb R}^n}\) (submitted)

  37. Kohr M., Pintea C., Wendland W.L.: Brinkman-type operators on Riemannian manifolds: transmission problems in Lipschitz and C 1 domains. Potential Anal. 32, 229–273 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Kohr M., Pintea C., Wendland W.L.: Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman operators. Int. Math. Res. Notices 2013(19), 4499–4588 (2013)

    MathSciNet  Google Scholar 

  39. Kohr M., Pop I.: Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press, Southampton (2004)

    MATH  Google Scholar 

  40. Kohr M., Raja Sekhar G.P., Blake J.R.: Green’s function of the Brinkman equation in a 2D anisotropic case. IMA J. Appl. Math. 73, 374–392 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Kohr M., Raja Sekhar G.P., Wendland W.L.: Boundary integral equations for a three-dimensional Stokes-Brinkman cell model. Math. Models Methods Appl. Sci. 18, 2055–2085 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Lanza de Cristoforis M.: Asymptotic behaviour of the solutions of a nonlinear Robin problem for the Laplace operator in a domain with a small hole: a functional analytic approach. Complex Var. Elliptic Equ. 52, 945–977 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Lanza de Cristoforis M., Musolino P.: A singularly perturbed nonlinear Robin problem in a periodically perforated domain: a functional analytic approach. Complex Var. Elliptic Equ. 58, 511–536 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lanzani L., Capogna L., Brown L.R.M.: The mixed problem in L p for some two-dimensional Lipschitz domains. Math. Ann. 342, 91–124 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lanzani L., Méndez O.: The Poisson’s problem for the Laplacian with Robin boundary condition in non-smooth domains. Rev. Mat. Iberoamericana 22, 181–204 (2006)

    Article  MATH  Google Scholar 

  46. Lanzani L., Shen L.Z.: On the Robin boundary condition for Laplace’s equation in Lipschitz domains. Commun. Partial Differ. Equ. 29, 91–109 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  47. Maz’ya V., Rossmann J.: Lp estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains. Math. Nachr. 280, 751–793 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  48. Maz’ya V., Rossmann J.: Mixed boundary value problems for the Navier–Stokes system in polyhedral domains. Arch. Ration. Mech. Anal. 194, 669–712 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  49. Medková, D.: The third problem for the Stokes system in bounded domain. Institute of Mathematics, AS CR, Prague (2010, preprint)

  50. Medková D.: Integral equation method for the first and second problems of the Stokes system. Potential Anal. 39, 389–409 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  51. Mikhailov S.E.: Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Anal. Appl. 378, 324–342 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  52. Mitrea M.: Mixed boundary-value problems for Maxwell’s equations. Trans. Am. Math. Soc. 362, 117–143 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  53. Mitrea I., Mitrea M.: The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains. Trans. Am. Math. Soc. 359, 4143–4182 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  54. Mitrea M., Monniaux S., Wright M.: The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. (New York) 176(3), 409–457 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  55. Mitrea M., Taylor M.: Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163, 181–251 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  56. Mitrea M., Taylor M.: Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem. J. Funct. Anal. 176, 1–79 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  57. Mitrea M., Taylor M.: Navier–Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  58. Mitrea M., Taylor M.: Potential theory on Lipschitz domains in Riemannian manifolds: the case of Dini metric tensors. Trans. Am. Math. Soc. 355, 1961–1985 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  59. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque. 344, viii+241 pp. (2012)

  60. Nield D.A., Bejan A.: Convection in Porous Media, 3rd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  61. Ott K.A., Brown R.M.: The mixed problem for the Laplacian in Lipschitz domains. Potential Anal. 38, 1333–1364 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  62. Russo R.: On Stokes’ problem. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 473–511. Springer, Berlin (2010)

    Chapter  Google Scholar 

  63. Russo R., Tartaglione A.: On the Robin problem for Stokes and Navier–Stokes systems. Math. Models Methods Appl. Sci. 19, 701–716 (2006)

    Article  MathSciNet  Google Scholar 

  64. Russo R., Tartaglione A.: On the Oseen and Navier–Stokes systems with a slip boundary condition. Appl. Math. Lett. 29, 674–678 (2009)

    Article  MathSciNet  Google Scholar 

  65. Russo R., Tartaglione A.: On the Navier problem for the stationary Navier–Stokes equations. J. Differ. Equ. 251, 2387–2408 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. Sohr H.: The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    Google Scholar 

  67. Stephan E.P.: Boundary integral equations for screen problems in \({{\mathbb R}^3}\) . J. Int. Equ. Oper. Theory 10, 236–257 (1987)

    Article  MATH  Google Scholar 

  68. Stephan E.P.: Boundary integral equations for mixed boundary value problems in \({{\mathbb R}^3}\) . Math. Nachr. 134, 21–53 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  69. Tartaglione A.: On the Stokes problem with slip boundary conditions. Commun. Appl. Ind. Math. 1, 186–205 (2010)

    MathSciNet  Google Scholar 

  70. Taylor J.L., Ott K.A., Brown R.M.: The mixed problem in Lipschitz domains with general decompositions of the boundary. Trans. Am. Math. Soc. 365, 2895–2930 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  71. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Publ. Co., Amsterdam (1978)

    Google Scholar 

  72. Varnhorn W.: The Stokes Equations. Akademie Verlag, Berlin (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Lanza de Cristoforis.

Additional information

Communicated by M. Feistauer

The work of Mirela Kohr was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0994. Some of the research for this paper was done in August, 2013, while Mirela Kohr visited the Department of Mathematics of the University of Toronto. She is grateful to the members of this department for their hospitality during that visit.

Massimo Lanza de Cristoforis acknowledges the support of ‘GNAMPA-Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni’ and of the project ‘Singular perturbation problems for differential operators’ of the University of Padua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohr, M., de Cristoforis, M.L. & Wendland, W.L. Boundary Value Problems of Robin Type for the Brinkman and Darcy–Forchheimer–Brinkman Systems in Lipschitz Domains. J. Math. Fluid Mech. 16, 595–630 (2014). https://doi.org/10.1007/s00021-014-0176-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-014-0176-3

Mathematics Subject Classification (2010)

Keywords

Navigation